• [BZOJ 2839]集合计数


    Description

    题库链接

    (2^n) 个集合,每个集合只包含 ([1,n]) ,且这些集合两两不同。问有多少种选择方法(至少选一个),使得这些集合交集大小为 (k)

    (0leq kleq nleq 1000000)

    Solution

    (f(n)) 为交集元素大于 (k) 的方案数,设 (g(n)) 为交集元素等于 (k) 的方案数。

    容易得到

    [f(k)=sum_{i=k}^n{ichoose k}g(i)Rightarrow g(k)=sum_{i=k}^n(-1)^{i-k}{ichoose k}f(i)]

    并且 (f(i)={nchoose i}2^{2^{n-i}})

    直接求就好了。

    Code

    #include <bits/stdc++.h>
    using namespace std;
    const int N = 1000000+5, yzh = 1000000007;
    
    int n, k, ifac[N], fac[N], ans;
    
    int quick_pow(int a, int b, int p) {
        int ans = 1;
        while (b) {
            if (b&1) ans = 1ll*ans*a%p;
            b >>= 1, a = 1ll*a*a%p;
        }
        return ans;
    }
    int C(int n, int m) {return 1ll*fac[n]*ifac[m]%yzh*ifac[n-m]%yzh; }
    void work() {
        scanf("%d%d", &n, &k);
        fac[0] = fac[1] = ifac[0] = ifac[1] = 1;
        for (int i = 2; i <= n; i++) ifac[i] = -1ll*yzh/i*ifac[yzh%i]%yzh;
        for (int i = 2; i <= n; i++)
            fac[i] = 1ll*fac[i-1]*i%yzh, ifac[i] = 1ll*ifac[i]*ifac[i-1]%yzh;
        for (int i = k; i <= n; i++)
            if ((i-k)&1) (ans -= 1ll*C(i, k)*C(n, i)%yzh*quick_pow(2, quick_pow(2, n-i, yzh-1), yzh)%yzh) %= yzh;
            else (ans += 1ll*C(i, k)*C(n, i)%yzh*quick_pow(2, quick_pow(2, n-i, yzh-1), yzh)%yzh) %= yzh;
        printf("%d
    ", (ans+yzh)%yzh);
    }
    int main() {work(); return 0; }
  • 相关阅读:
    Valid Number
    ZigZag Conversion
    KMP
    [OJ#40]后宫佳丽
    [OJ#39]左手右手
    [COJ0968]WZJ的数据结构(负三十二)
    [COJ0970]WZJ的数据结构(负三十)
    [BZOJ2815][ZJOI2012]灾难
    [BZOJ1923][Sdoi2010]外星千足虫
    [BZOJ4034][HAOI2015]树上操作
  • 原文地址:https://www.cnblogs.com/NaVi-Awson/p/9245549.html
Copyright © 2020-2023  润新知