Description
(t) 组询问。每组询问给出一个字符串 (S) 。要求求出一个 (num) 数组一一对于字符串 (S) 的前 (i) 个字符构成的子串,既是它的后缀同时又是它的前缀,并且该后缀与该前缀不重叠,将这种字符串的数量记作 (num_i) 。输出 (prodlimits_{i=1}^{lenth(S)}(num_i+1)) 。
(1leq tleq 5,1leq lenth(S)leq 1000000)
Solution
显然可以用两个指针来操作。一个还是求 (KMP) 的 (next) 数组的指针;令一个则是递推出 (num) 数组的指针。
首先注意到的是第二个指针的含义是满足题意的长度最长的前缀(后缀)的长度。其实递推 (next) 数组时,可以预处理出一个辅助数组 (cnt_i) ,表示前 (i) 个字符构成的子串,既是它的后缀同时又是它的前缀的个数。显然 (num_i) 为第二个指针位置的 (cnt) 的值。 (O(n)) 递推即可。
Code
//It is made by Awson on 2018.3.14
#include <bits/stdc++.h>
#define LL long long
#define dob complex<double>
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('
'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int yzh = 1000000007, N = 1000000;
void read(int &x) {
char ch; bool flag = 0;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
x *= 1-2*flag;
}
void print(LL x) {if (x > 9) print(x/10); putchar(x%10+48); }
void write(LL x) {if (x < 0) putchar('-'); print(Abs(x)); }
char ch[N+5];
int len, ans, nxt[N+5], cnt[N+5], p;
void work() {
scanf("%s", ch+1); len = strlen(ch+1), ans = 1, p = 0; cnt[1] = 1;
for (int i = 2; i <= len; i++) {
int j = nxt[i-1];
while (j && ch[j+1] != ch[i]) j = nxt[j];
if (ch[j+1] == ch[i]) ++j; nxt[i] = j, cnt[i] = cnt[j]+1;
while (p && ch[p+1] != ch[i]) p = nxt[p];
if (ch[p+1] == ch[i]) ++p;
while (p > (i>>1)) p = nxt[p];
ans = 1ll*ans*(cnt[p]+1)%yzh;
}
writeln(ans);
}
int main() {
int t; read(t); while (t--) work(); return 0;
}