• [SDOI 2010]魔法猪学院


    Description

    题库链接

    给出一张 (n) 个点 (m) 条边有向图,询问最多有多少条不同的路径从 (1)(n) 并且路径长度和 (leq E)

    (2leq nleq 5000,1leq mleq 200000,1leq Eleq 10^7)

    Solution

    由于要求最多多少条,我们有贪心的思想,选取尽可能短的路径不会差。

    那么题目就变成了求这张图 (1 ightarrow n) 的最短的 (ans) 条路径,并且路径的长度和 (leq E)

    就变成了裸的 (k) 短路问题。

    (f(x)=g(x)+h(x)) ,由于让路径尽可能短,那么估价函数 (h(x)) 就取点 (x)(n) 的最短路就好了。

    b站上这道题代码写的丑的 (stl)(MLE) ,像我这种菜鸡肯定过不了,只能手写可并堆了...

    Code

    //It is made by Awson on 2018.3.1
    #include <bits/stdc++.h>
    #define LL long long
    #define dob complex<double>
    #define Abs(a) ((a) < 0 ? (-(a)) : (a))
    #define Max(a, b) ((a) > (b) ? (a) : (b))
    #define Min(a, b) ((a) < (b) ? (a) : (b))
    #define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
    #define writeln(x) (write(x), putchar('
    '))
    #define lowbit(x) ((x)&(-(x)))
    using namespace std;
    const int N = 5000, M = 200000, INF = ~0u>>1;
    void read(int &x) {
        char ch; bool flag = 0;
        for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
        for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
        x *= 1-2*flag;
    }
    void print(int x) {if (x > 9) print(x/10); putchar(x%10+48); }
    void write(int x) {if (x < 0) putchar('-'); print(Abs(x)); }
    
    int n, m, vis[N+5]; double dist[N+5], e;
    struct node {
        double f, g; int u;
        bool operator < (const node &b) const {return f > b.f; }
    };
    struct mergeable_tree {
        int ch[1300005][2], dist[1300005], pos, root, cnt; node k[1300005];
        queue<int>mem;
        int newnode(node x) {
        int o; if (!mem.empty()) o = mem.front(), mem.pop(); else o = ++pos;
        ch[o][0] = ch[o][1] = dist[o] = 0; k[o] = x; return o;
        }
        int merge(int a, int b) {
        if (!a || !b) return a+b;
        if (k[a] < k[b]) Swap(a, b);
        ch[a][1] = merge(ch[a][1], b);
        if (dist[ch[a][0]] < dist[ch[a][1]]) Swap(ch[a][0], ch[a][1]);
        dist[a] = dist[ch[a][1]]+1; return a;
        }
        node top() {return k[root]; }
        void push(node x) {root = merge(root, newnode(x)); ++cnt; }
        void pop() {mem.push(root); root = merge(ch[root][0], ch[root][1]); --cnt; }
        bool empty() {return !cnt; }
    }Q;
    struct Graph {
        struct tt {int to, next; double cost; }edge[M+5];
        int path[N+5], top;
        void add(int u, int v, double c) {edge[++top].to = v, edge[top].next = path[u], edge[top].cost = c, path[u] = top; }
        void SPFA() {
        for (int i = 1; i < n; i++) dist[i] = INF;
        queue<int>Q; vis[n] = 1; Q.push(n);
        while (!Q.empty()) {
            int u = Q.front(); Q.pop(); vis[u] = 0;
            for (int i = path[u]; i; i = edge[i].next)
            if (dist[edge[i].to] > dist[u]+edge[i].cost) {
                dist[edge[i].to] = dist[u]+edge[i].cost;
                if (!vis[edge[i].to]) Q.push(edge[i].to), vis[edge[i].to] = 1;
            }
        }
        }
        int Astar() {
        int ans = 0;
        node t, tt; t.f = dist[1], t.g = 0, t.u = 1;
        Q.push(t);
        while (!Q.empty()) {
            t = Q.top(); Q.pop();
            if (t.u == n) {if (e >= t.f) {ans++, e -= t.f; continue; } else break; }
            for (int i = path[t.u]; i; i = edge[i].next) {
            tt.g = t.g+edge[i].cost, tt.u = edge[i].to, tt.f = tt.g+dist[edge[i].to];
            Q.push(tt);
            }
        }
        return ans;
        }
    }g1, g2;
    
    void work() {
        read(n), read(m); scanf("%lf", &e); int u, v; double c;
        for (int i = 1; i <= m; i++) {
        read(u), read(v), scanf("%lf", &c), g1.add(u, v, c), g2.add(v, u, c);
        }
        g2.SPFA(); writeln(g1.Astar());
    }
    int main() {
        work(); return 0;
    }
  • 相关阅读:
    Object的原型拷贝-create、assign、getPrototypeOf 方法的结合
    配intelliJ IDEA 过程
    浅谈HTTP中Get与Post的区别
    apply、call、bind区别、用法
    引用类型与原始类型的区别
    html5标签集结1
    指针作为参数传递
    指针与指针变量
    函数模板
    内置函数
  • 原文地址:https://www.cnblogs.com/NaVi-Awson/p/8486667.html
Copyright © 2020-2023  润新知