Description
给出一张 (n) 个点 (m) 条边有向图,询问最多有多少条不同的路径从 (1) 到 (n) 并且路径长度和 (leq E) 。
(2leq nleq 5000,1leq mleq 200000,1leq Eleq 10^7)
Solution
由于要求最多多少条,我们有贪心的思想,选取尽可能短的路径不会差。
那么题目就变成了求这张图 (1 ightarrow n) 的最短的 (ans) 条路径,并且路径的长度和 (leq E) 。
就变成了裸的 (k) 短路问题。
由 (f(x)=g(x)+h(x)) ,由于让路径尽可能短,那么估价函数 (h(x)) 就取点 (x) 到 (n) 的最短路就好了。
b站上这道题代码写的丑的 (stl) 会 (MLE) ,像我这种菜鸡肯定过不了,只能手写可并堆了...
Code
//It is made by Awson on 2018.3.1
#include <bits/stdc++.h>
#define LL long long
#define dob complex<double>
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('
'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int N = 5000, M = 200000, INF = ~0u>>1;
void read(int &x) {
char ch; bool flag = 0;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
x *= 1-2*flag;
}
void print(int x) {if (x > 9) print(x/10); putchar(x%10+48); }
void write(int x) {if (x < 0) putchar('-'); print(Abs(x)); }
int n, m, vis[N+5]; double dist[N+5], e;
struct node {
double f, g; int u;
bool operator < (const node &b) const {return f > b.f; }
};
struct mergeable_tree {
int ch[1300005][2], dist[1300005], pos, root, cnt; node k[1300005];
queue<int>mem;
int newnode(node x) {
int o; if (!mem.empty()) o = mem.front(), mem.pop(); else o = ++pos;
ch[o][0] = ch[o][1] = dist[o] = 0; k[o] = x; return o;
}
int merge(int a, int b) {
if (!a || !b) return a+b;
if (k[a] < k[b]) Swap(a, b);
ch[a][1] = merge(ch[a][1], b);
if (dist[ch[a][0]] < dist[ch[a][1]]) Swap(ch[a][0], ch[a][1]);
dist[a] = dist[ch[a][1]]+1; return a;
}
node top() {return k[root]; }
void push(node x) {root = merge(root, newnode(x)); ++cnt; }
void pop() {mem.push(root); root = merge(ch[root][0], ch[root][1]); --cnt; }
bool empty() {return !cnt; }
}Q;
struct Graph {
struct tt {int to, next; double cost; }edge[M+5];
int path[N+5], top;
void add(int u, int v, double c) {edge[++top].to = v, edge[top].next = path[u], edge[top].cost = c, path[u] = top; }
void SPFA() {
for (int i = 1; i < n; i++) dist[i] = INF;
queue<int>Q; vis[n] = 1; Q.push(n);
while (!Q.empty()) {
int u = Q.front(); Q.pop(); vis[u] = 0;
for (int i = path[u]; i; i = edge[i].next)
if (dist[edge[i].to] > dist[u]+edge[i].cost) {
dist[edge[i].to] = dist[u]+edge[i].cost;
if (!vis[edge[i].to]) Q.push(edge[i].to), vis[edge[i].to] = 1;
}
}
}
int Astar() {
int ans = 0;
node t, tt; t.f = dist[1], t.g = 0, t.u = 1;
Q.push(t);
while (!Q.empty()) {
t = Q.top(); Q.pop();
if (t.u == n) {if (e >= t.f) {ans++, e -= t.f; continue; } else break; }
for (int i = path[t.u]; i; i = edge[i].next) {
tt.g = t.g+edge[i].cost, tt.u = edge[i].to, tt.f = tt.g+dist[edge[i].to];
Q.push(tt);
}
}
return ans;
}
}g1, g2;
void work() {
read(n), read(m); scanf("%lf", &e); int u, v; double c;
for (int i = 1; i <= m; i++) {
read(u), read(v), scanf("%lf", &c), g1.add(u, v, c), g2.add(v, u, c);
}
g2.SPFA(); writeln(g1.Astar());
}
int main() {
work(); return 0;
}