• [SDOI 2017]数字表格


    Description

    题库链接

    (f_i)(fibonacci) 数列的第 (i) 项。

    [prod_{i=1}^nprod_{j=1}^mf_{gcd(i,j)}]

    对质数取模,多组询问。

    (1leq tleq 1000,1leq n,mleq 10^6)

    Solution

    [egin{aligned}Rightarrow&prod_{d=1}^{min{n,m}}f(d)^{sumlimits_{i=1}^{leftlfloorfrac{n}{d} ight floor}sumlimits_{j=1}^{leftlfloorfrac{m}{d} ight floor}[gcd(i,j)=1]}\=&prod_{d=1}^{min{n,m}}f(d)^{sumlimits_{i=1}^{leftlfloorfrac{n}{d} ight floor}sumlimits_{j=1}^{leftlfloorfrac{m}{d} ight floor}sumlimits_{kmid gcd(i,j)}mu(k)}\=&prod_{d=1}^{min{n,m}}f(d)^{sumlimits_{k=1}^{minleft{leftlfloorfrac{n}{d} ight floor,leftlfloorfrac{m}{d} ight floor ight}}mu(k)leftlfloorfrac{n}{kd} ight floorleftlfloorfrac{m}{kd} ight floor}end{aligned}]

    (T=kd) [prod_{T=1}^{min{n,m}}prod_{dmid T}f(d)^{muleft(frac{T}{d} ight)leftlfloorfrac{n}{T} ight floorleftlfloorfrac{m}{T} ight floor}]

    我们把其中类似于狄利克雷卷积形式的东西记做 (F(T)) [prod_{T=1}^{min{n,m}}F(T)^{leftlfloorfrac{n}{T} ight floorleftlfloorfrac{m}{T} ight floor}]

    那么可以枚举因子来求 (F(T)) ,显然可以在近似于 (O(nln~n)) 的时限内预处理出来。然后数论分块的复杂度为 (O(t sqrt n))

    Code

    //It is made by Awson on 2018.2.22
    #include <bits/stdc++.h>
    #define LL long long
    #define dob complex<double>
    #define Abs(a) ((a) < 0 ? (-(a)) : (a))
    #define Max(a, b) ((a) > (b) ? (a) : (b))
    #define Min(a, b) ((a) < (b) ? (a) : (b))
    #define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
    #define writeln(x) (write(x), putchar('
    '))
    #define lowbit(x) ((x)&(-(x)))
    using namespace std;
    const int N = 1e6;
    const int yzh = 1e9+7;
    void read(int &x) {
        char ch; bool flag = 0;
        for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
        for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
        x *= 1-2*flag;
    }
    void print(LL x) {if (x > 9) print(x/10); putchar(x%10+48); }
    void write(LL x) {if (x < 0) putchar('-'); print(Abs(x)); }
    
    int n, m, t, mu[N+5], f[N+5], F[N+5];
    int isprime[N+5], prime[N+5], tot, inv[N+5];
    
    int quick_pow(int a, int b) {
        int ans = 1;
        while (b) {
        if (b&1) ans = 1ll*ans*a%yzh;
        b >>= 1, a = 1ll*a*a%yzh;
        }
        return ans;
    }
    void get_pre() {
        inv[1] = inv[2] = f[1] = f[2] = 1; for (int i = 3; i <= N; i++) f[i] = (f[i-1]+f[i-2])%yzh, inv[i] = quick_pow(f[i], yzh-2);
        for (int i = 0; i <= N; i++) isprime[i] = F[i] = 1; isprime[1] = 0, mu[1] = 1;
        for (int i = 2; i <= N; i++) {
        if (isprime[i]) prime[++tot] = i, mu[i] = -1;
        for (int j = 1; j <= tot && i*prime[j] <= N; j++)
            if (i%prime[j] != 0) isprime[i*prime[j]] = 0, mu[i*prime[j]] = -mu[i];
            else {isprime[i*prime[j]] = 0, mu[i*prime[j]] = 0; break; }
        }
        for (int i = 1; i <= N; i++)
        for (int j = 1; j*i <= N; j++)
            if (mu[j] == 1) F[i*j] = 1ll*F[i*j]*f[i]%yzh;
            else if (mu[j] == -1) F[i*j] = 1ll*F[i*j]*inv[i]%yzh;
        for (int i = 2; i <= N; i++) F[i] = 1ll*F[i]*F[i-1]%yzh;
    }
    void work() {
        get_pre(); read(t);
        while (t--) {
        read(n), read(m); if (n > m) Swap(n, m);
        int ans = 1;
        for (int i = 1, last; i <= n; i = last+1) {
            last = Min(n/(n/i), m/(m/i));
            ans = 1ll*ans*quick_pow(1ll*F[last]*quick_pow(F[i-1], yzh-2)%yzh, 1ll*(n/i)*(m/i)%(yzh-1))%yzh;
        }
        writeln(ans);
        }
    }
    int main() {
        work(); return 0;
    }
  • 相关阅读:
    懒加载 和 json
    [iOS]用instancetype代替id作返回类型有什么好处?
    (转)Objective-C语法之KVC使用
    UITableView 展示数据
    shopee
    防火墙
    vue项目开发技巧
    文件流
    vant
    node 使用
  • 原文地址:https://www.cnblogs.com/NaVi-Awson/p/8458138.html
Copyright © 2020-2023  润新知