• [HNOI 2014]世界树


    Description

    题库链接

    给出一棵 (n) 个节点的树, (q) 次询问,每次给出 (k) 个关键点。树上所有的点会被最靠近的关键点管辖,若距离相等则选编号最小的那个。求每个关键点管辖多少个节点。

    (1leq n,q,sum kleq 300000)

    Solution

    构出虚树后,我们能用简单的树形 (dp) 求出每个点离他最近的关键点。大体是做两遍 (dfs) 。第一遍用儿子更新父亲,第二遍用父亲更新儿子。

    处理好这个之后,对于虚树上每个点。他的子树有两种:一个是虚树里的,一个是不在虚树里的。不在虚树里的后代肯定和他共用同一个关键点;

    对于虚树上的一条边 ((u,v)) ,我们需要找到 ((u,v)) 边上的所有点以及他们连出去的块的最近点,更新答案。

    如果 (u, v) 的最近点相同,那么这条边所代表的所有点的最近点肯定就是 (u,v) 的最近点;否则,可以用倍增找到临界点,计算贡献。

    Code

    //It is made by Awson on 2018.2.21
    #include <bits/stdc++.h>
    #define LL long long
    #define dob complex<double>
    #define Abs(a) ((a) < 0 ? (-(a)) : (a))
    #define Max(a, b) ((a) > (b) ? (a) : (b))
    #define Min(a, b) ((a) < (b) ? (a) : (b))
    #define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
    #define writeln(x) (write(x), putchar('
    '))
    #define lowbit(x) ((x)&(-(x)))
    using namespace std;
    const int N = 300000;
    const int INF = ~0u>>1;
    void read(int &x) {
        char ch; bool flag = 0;
        for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
        for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
        x *= 1-2*flag;
    }
    void print(int x) {if (x > 9) print(x/10); putchar(x%10+48); }
    void write(int x) {if (x < 0) putchar('-'); print(Abs(x)); }
    
    int n, lim, u, v, fa[N+5][20], dep[N+5], size[N+5], dfn[N+5], times;
    int flag[N+5], lst[N+5], kp[N+5], belong[N+5], dist[N+5], k, q, ans[N+5], S[N+5], top;
    struct graph {
        struct tt {int to, next; }edge[(N<<1)+5];
        int path[N+5], top;
        void add(int u, int v) {edge[++top].to = v, edge[top].next = path[u], path[u] = top; }
        void dfs1(int o, int depth) {
        dep[o] = depth, size[o] = 1, dfn[o] = ++times; for (int i = 1; i <= lim; i++) fa[o][i] = fa[fa[o][i-1]][i-1];
        for (int i = path[o]; i; i = edge[i].next)
            if (dfn[edge[i].to] == 0) fa[edge[i].to][0] = o, dfs1(edge[i].to, depth+1), size[o] += size[edge[i].to];
        }
        void dfs2(int o) {
        belong[o] = 0, dist[o] = INF>>1;
        if (flag[o]) belong[o] = o, dist[o] = 0;
        for (int i = path[o]; i; i = edge[i].next) {
            dfs2(edge[i].to);
            if ((dist[edge[i].to]+dep[edge[i].to]-dep[o] < dist[o]) || (dist[edge[i].to]+dep[edge[i].to]-dep[o] == dist[o] && belong[o] > belong[edge[i].to])) dist[o] = dist[edge[i].to]+dep[edge[i].to]-dep[o], belong[o] = belong[edge[i].to];
        }
        }
        void dfs3(int o) {
        for (int i = path[o]; i; i = edge[i].next) {
            if ((dist[o]+dep[edge[i].to]-dep[o] < dist[edge[i].to]) || (dist[o]+dep[edge[i].to]-dep[o] == dist[edge[i].to] && belong[o] < belong[edge[i].to])) dist[edge[i].to] = dist[o]+dep[edge[i].to]-dep[o], belong[edge[i].to] = belong[o];
            dfs3(edge[i].to);
        }
        }
        void dfs4(int o) {
        int rem = size[o];
        for (int &i = path[o]; i; i = edge[i].next) {
            int x = edge[i].to; for (int j = lim; j >= 0; j--) if (dep[fa[x][j]] > dep[o]) x = fa[x][j];
            rem -= size[x];
            if (belong[edge[i].to] == belong[o]) ans[belong[o]] += size[x]-size[edge[i].to];
            else {
            int v = edge[i].to;
            for (int j = lim; j >= 0; j--)
                if (dep[fa[v][j]] >= dep[o])
                if ((dist[edge[i].to]+dep[edge[i].to]-dep[fa[v][j]] < dist[o]+dep[fa[v][j]]-dep[o]) || (dist[edge[i].to]+dep[edge[i].to]-dep[fa[v][j]] == dist[o]+dep[fa[v][j]]-dep[o] && belong[edge[i].to] < belong[o])) v = fa[v][j];
            ans[belong[o]] += size[x]-size[v];
            ans[belong[edge[i].to]] += size[v]-size[edge[i].to];
            }
            dfs4(edge[i].to);
        }
        ans[belong[o]] += rem;
        }
    }g1, g2;
    bool comp(const int &a, const int &b) {return dfn[a] < dfn[b]; }
    int get_lca(int u, int v) {
        if (dep[u] < dep[v]) Swap(u, v);
        for (int i = lim; i >= 0; i--) if (dep[fa[u][i]] >= dep[v]) u = fa[u][i];
        if (u == v) return u;
        for (int i = lim; i >= 0; i--) if (fa[u][i] != fa[v][i]) u = fa[u][i], v = fa[v][i];
        return fa[u][0];
    }
    
    void work() {
        read(n); lim = log(n)/log(2);
        for (int i = 1; i < n; i++) read(u), read(v), g1.add(u, v), g1.add(v, u);
        g1.dfs1(1, 1); read(q);
        while (q--) {
        read(k); for (int i = 1; i <= k; i++) read(lst[i]), flag[kp[i] = lst[i]] = 1;
        top = g2.top = 0; sort(lst+1, lst+1+k, comp);
        S[++top] = 1;
        for (int i = 1; i <= k; i++) {
            int lca = get_lca(lst[i], S[top]);
            while (dfn[lca] < dfn[S[top]]) {
            if (dfn[lca] >= dfn[S[top-1]]) {
                g2.add(lca, S[top]), --top;
                if (S[top] != lca) S[++top] = lca;
                break;
            }
            g2.add(S[top-1], S[top]), --top;
            }
            if (S[top] != lst[i]) S[++top] = lst[i];
        }
        while (top > 1) g2.add(S[top-1], S[top]), --top;
        g2.dfs2(1), g2.dfs3(1), g2.dfs4(1);
        for (int i = 1; i < k; i++) write(ans[kp[i]]), putchar(' ');
        writeln(ans[kp[k]]);
        for (int i = 1; i <= k; i++) flag[kp[i]] = ans[kp[i]] = 0;
        }
    }
    int main() {
        work(); return 0;
    }
  • 相关阅读:
    Map 嵌套存储Map
    LinkedList;以及迭代器Iterator
    计算某字符串中大写字母、小写字母以及数字的个数
    String字符串转多种类型及多种方法的应用
    String类的构造方法
    String类(附件)
    (五)Kubernetes集群安装
    (四)Kubernetes 网络通讯方式
    (三)Kubernetes-Pod概念
    (二)Kubernetes组件说明
  • 原文地址:https://www.cnblogs.com/NaVi-Awson/p/8457120.html
Copyright © 2020-2023  润新知