• [LNOI 2014]LCA


    Description

    给出一个n个节点的有根树(编号为0到n-1,根节点为0)。一个点的深度定义为这个节点到根的距离+1。
    设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先。
    有q次询问,每次询问给出l r z,求sigma_{l<=i<=r}dep[LCA(i,z)]。
    (即,求在[l,r]区间内的每个节点i与z的最近公共祖先的深度之和)

    Input

    第一行2个整数n q。
    接下来n-1行,分别表示点1到点n-1的父节点编号。
    接下来q行,每行3个整数l r z。

    Output

    输出q行,每行表示一个询问的答案。每个答案对201314取模输出

    Sample Input

    5 2
    0
    0
    1
    1
    1 4 3
    1 4 2

    Sample Output

    8
    5

    HINT

    共5组数据,n与q的规模分别为10000,20000,30000,40000,50000。

    题解

    [HNOI 2015]开店的简化版。

     1 //It is made by Awson on 2018.1.8
     2 #include <set>
     3 #include <map>
     4 #include <cmath>
     5 #include <ctime>
     6 #include <queue>
     7 #include <stack>
     8 #include <cstdio>
     9 #include <string>
    10 #include <vector>
    11 #include <cstdlib>
    12 #include <cstring>
    13 #include <iostream>
    14 #include <algorithm>
    15 #define LL long long
    16 #define RE register
    17 #define lowbit(x) ((x)&(-(x)))
    18 #define Max(a, b) ((a) > (b) ? (a) : (b))
    19 #define Min(a, b) ((a) < (b) ? (a) : (b))
    20 #define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
    21 using namespace std;
    22 const int N = 50000;
    23 const int MOD = 201314;
    24 const int INF = ~0u>>1;
    25 
    26 int n, q, f, u, v, c, fa[N+5], dep[N+5], top[N+5], cnt, size[N+5], son[N+5], pos[N+5];
    27 struct tt {
    28     int to, next;
    29 }edge[N+5];
    30 int path[N+5], tot;
    31 void add(int u, int v) {
    32     edge[++tot].to = v;
    33     edge[tot].next = path[u];
    34     path[u] = tot;
    35 }
    36 struct Segment_tree {
    37     int root[N+5], sum[N*150+5], lazy[N*150+5], ch[N*150][2], pos;
    38     int newnode(int r) {
    39     int o = ++pos; sum[o] = sum[r], lazy[o] = lazy[r], ch[o][0] = ch[r][0], ch[o][1] = ch[r][1];
    40     return o;
    41     }
    42     void update(int &o, int l, int r, int a, int b, int last) {
    43        if (o <= last) o = newnode(o);
    44     if (a <= l && r <= b) {
    45         sum[o] += r-l+1, sum[o] %= MOD, lazy[o]++; return;
    46     }
    47     int mid = (l+r)>>1;
    48     if (mid >= a) update(ch[o][0], l, mid, a, b, last);
    49     if (mid < b) update(ch[o][1], mid+1, r, a, b, last);
    50     sum[o] = (sum[ch[o][0]]+sum[ch[o][1]]+(LL)lazy[o]*(r-l+1)%MOD)%MOD;
    51     }
    52     int query(int o, int l, int r, int a, int b) {
    53     if (!o) return 0;
    54     if (a <= l && r <= b) return sum[o];
    55     int mid = (l+r)>>1, c1 = 0, c2 = 0;
    56     if (mid >= a) c1 = query(ch[o][0], l, mid, a, b);
    57     if (mid < b) c2 = query(ch[o][1], mid+1, r, a, b);
    58     return (c1+c2+(LL)lazy[o]*(Min(r, b)-Max(l, a)+1)%MOD)%MOD;
    59     }
    60 }T;
    61 void dfs1(int o, int father, int depth) {
    62     fa[o] = father, dep[o] = depth+1, size[o] = 1;
    63     for (int i = path[o]; i; i = edge[i].next) {
    64     dfs1(edge[i].to, o, depth+1);
    65     size[o] += size[edge[i].to];
    66     if (size[edge[i].to] > size[son[o]]) son[o] = edge[i].to;
    67     }
    68 }
    69 void dfs2(int o, int tp) {
    70     top[o] = tp, pos[o] = ++cnt;
    71     if (son[o]) dfs2(son[o], tp);
    72     for (int i = path[o]; i; i = edge[i].next)
    73     if (edge[i].to != son[o]) dfs2(edge[i].to, edge[i].to);
    74 }
    75 void lca_update(int id, int o, int last) {while (top[o]) T.update(T.root[id], 1, n, pos[top[o]], pos[o], last), o = fa[top[o]]; }
    76 int lca_query(int id, int o) {
    77     int ans = 0;
    78     while (top[o]) ans += T.query(T.root[id], 1, n, pos[top[o]], pos[o]), ans %= MOD, o = fa[top[o]];
    79     return ans;
    80 }
    81 void work() {
    82     scanf("%d%d", &n, &q);
    83     for (int i = 2; i <= n; i++) scanf("%d", &f), add(f+1, i);
    84     dfs1(1, 0, 1), dfs2(1, 1);
    85     for (int i = 1; i <= n; i++) {
    86     T.root[i] = T.root[i-1]; lca_update(i, i, T.pos);
    87     }
    88     while (q--) {
    89     scanf("%d%d%d", &u, &v, &c);
    90     printf("%d
    ", (lca_query(v+1, c+1)-lca_query(u, c+1)+MOD)%MOD);
    91     }
    92 }
    93 int main() {
    94     work();
    95     return 0;
    96 }
  • 相关阅读:
    IOS照相机的启动,图片的读取,存储demo
    ios中摄像头/相册获取图片,压缩图片,上传服务器方法总结
    AFNetworking 使用总结 (用法+JSON解析
    AFNetworking 初探
    虹吸壶的前世今生
    手摇磨豆机经验总结--2013.7.11修改
    国贸女和中关村大叔的故事以及老男孩咖啡
    Chrome 的插件(Plug-in)与扩展(Extension)的区别
    js callback && callback()
    js the difference between 'return false' and 'return true'
  • 原文地址:https://www.cnblogs.com/NaVi-Awson/p/8243557.html
Copyright © 2020-2023  润新知