Description
Today
we are not desiring the maximum value of bones,but the K-th maximum
value of the bones.NOTICE that,we considerate two ways that get the same
value of bones are the same.That means,it will be a strictly decreasing
sequence from the 1st maximum , 2nd maximum .. to the K-th maximum.
If the total number of different values is less than K,just ouput 0.
If the total number of different values is less than K,just ouput 0.
Input
The first line contain a integer T , the number of cases.
Followed by T cases , each case three lines , the first line contain two integer N , V, K(N <= 100 , V <= 1000 , K <= 30)representing the number of bones and the volume of his bag and the K we need. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.
Followed by T cases , each case three lines , the first line contain two integer N , V, K(N <= 100 , V <= 1000 , K <= 30)representing the number of bones and the volume of his bag and the K we need. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.
Output
One integer per line representing the K-th maximum of the total value (this number will be less than 231).
Sample Input
3
5 10 2
1 2 3 4 5
5 4 3 2 1
5 10 12
1 2 3 4 5
5 4 3 2 1
5 10 16
1 2 3 4 5
5 4 3 2 1
Sample Output
12
2
0
题解
第$K$大背包。
我们容易想到为背包数组再开一维$k$,
由于序列单调,每次转移的时候归并排序就好。
1 //It is made by Awson on 2017.9.25 2 #include <set> 3 #include <map> 4 #include <ctime> 5 #include <cmath> 6 #include <queue> 7 #include <stack> 8 #include <vector> 9 #include <cstdio> 10 #include <string> 11 #include <cstring> 12 #include <cstdlib> 13 #include <iostream> 14 #include <algorithm> 15 #define LL long long 16 #define Max(a, b) ((a) > (b) ? (a) : (b)) 17 #define Min(a, b) ((a) < (b) ? (a) : (b)) 18 #define sqr(x) ((x)*(x)) 19 using namespace std; 20 const int N = 100; 21 const int V = 1000; 22 const int K = 30; 23 24 int n, m, k; 25 int w[N+5], v[N+5]; 26 int f[V+5][K+5]; 27 28 void work() { 29 scanf("%d%d%d", &n , &m, &k); 30 for (int i = 1; i <= n; i++) scanf("%d", &w[i]); 31 for (int i = 1; i <= n; i++) scanf("%d", &v[i]); 32 memset(f, 0, sizeof(f)); 33 for (int i = 1; i <= n; i++) 34 for (int j = m; j >= v[i]; j--) { 35 int a[V+5], b[V+5]; 36 for (int p = 1; p <= k; p++) 37 a[p] = f[j][p]; 38 for (int p = 1; p <= k; p++) 39 b[p] = f[j-v[i]][p]+w[i]; 40 a[k+1] = b[k+1] = -1; 41 int la = 1, lb = 1, l = 1; 42 while (l<=k && (la <= k || lb <= k)) { 43 if (a[la] >= b[lb]) f[j][l] = a[la++]; 44 else f[j][l] = b[lb++]; 45 if (f[j][l] != f[j][l-1]) l++; 46 } 47 } 48 printf("%d ", f[m][k]); 49 } 50 int main() { 51 int t; 52 scanf("%d", &t); 53 while (t--) 54 work(); 55 return 0; 56 }