• [HDU 2829]Lawrence


    Description

    题库链接

    给你一个长度为 (n) 的数组 (a)。你需要将其划分为 (m+1) 段,每一段的贡献为该段内所有元素两两乘积的和。求所有划分中贡献最少时的贡献和。

    (1leq m< nleq 1000)

    Solution

    假设前 (i) 个数分为 (j) 段的最少贡献为 (f_{i,j}),那么可以列出 DP 方程 (f_{i,j}=min{f_{k-1,j-1}+w(k, i)})

    这里的 (w) 其实就是这一段所有元素的和平方减去平方和再除以 2。显然 (w) 是满足四边形不等式的。那么可以用四边形不等式定理优化 DP,具体可以参考[IOI 2000]邮局这题题解。时间复杂度为 (O(n^2))

    由于 (w) 是一个二次函数形式的式子,也可以斜率优化,复杂度是 (O(nm)) 的。

    Code

    #include <bits/stdc++.h>
    #define ll long long
    using namespace std;
    const int N = 1005;
    
    int n, m, a[N], s[N][N];
    ll f[N][N], sum[N];
    
    int main() {
        while (~scanf("%d%d", &n, &m) && (n || m)) {
            for (int i = 1; i <= n; i++) {
                scanf("%d", &a[i]);
                sum[i] = sum[i-1]+1ll*a[i]*a[i];
                a[i] += a[i-1];
            }
            for (int i = 0; i <= n; i++) {
                s[i][0] = 1;
                f[i][0] = (1ll*a[i]*a[i]-sum[i])/2;
                for (int j = 1; j <= m; j++)
                    f[i][j] = 1e12;
            }
            for (int i = 1; i <= m; i++) s[n+1][i] = n;
            f[0][0] = 0;
            for (int j = 1; j <= m; j++)
                for (int i = n; i >= 1; i--)
                    for (int k = s[i][j-1]; k <= s[i+1][j]; k++)
                        if (f[i][j] > f[k-1][j-1]+(1ll*(a[i]-a[k-1])*(a[i]-a[k-1])-sum[i]+sum[k-1])/2) {
                            f[i][j] = f[k-1][j-1]+(1ll*(a[i]-a[k-1])*(a[i]-a[k-1])-sum[i]+sum[k-1])/2;
                            s[i][j] = k;
                        }
            printf("%lld
    ", f[n][m]);
        }
        return 0;
    }
  • 相关阅读:
    Pymsql
    MySQL基础操/下
    MySQL基础操作
    前端学习之jquery/下
    前端学习之jquery
    Python之异常处理
    Python之模块和包导入
    Python之模块
    Python之面向对象上下文管理协议
    Python之面向对象slots与迭代器协议
  • 原文地址:https://www.cnblogs.com/NaVi-Awson/p/13443785.html
Copyright © 2020-2023  润新知