• 【NOIP模拟】函数


    题面

    大 M 为了正在学习函数的光滑性并对 Lipschitz 常数非常感兴趣:当一个定义域为[l,r]的函数 f,对于定义域内的任意 x,y 都有|f(x)-f(y)|<=K*|x-y|时,则称 K 的最小值为该函数在[l,r]上的 Lipschitz 常数。然而大 M 并不满足于函数,所以他定义:对于一个序列 v[1..n],当1<=x<y<=n 且 x,y 均为整数时,同样满足|v[x]-v[y]|<=K*|x-y|,则称 K 的最小整数值为序列 v 的 Lipschitz 常数。现在给你一个长度为 n 的序列 v[1..n]并给出 q 个询问,对于每对询问[l,r],你需要求出 v[l..r]的所有子序列 v[x..y](l<=x<y<=r)的 Lipschitz 常数之和。这可难不倒会编程的你。

    第一行两个整数 n 和 q,分别表示序列的长度以及询问的个数。 第二行 n 个数,表示 v[1..n],0<=v[i]<=10^8。 接下来 q 行,每行两个数 l 和 r,表示询问的区间为[l..r]。

    对于每个询问,输出一行一个数,即 v[l..r]的所有子序列的 Lipschitz 常数 之和。

    对于 30%的数据,n<=500; 对于 60%的数据,n<=50000; 对于 100%的数据,n<=100000,q<=100。

    分析

    首先你要发现,v[l..r]的Lipshitz常数必定在v[x]和v[x+1](l<=x<=r-1)。为什么?看这个表达式,k不就是斜率吗?那你以v值为纵坐标,位置为横坐标建立坐标系,怎样的两点斜率最大?显然,相邻两点啊。

    所以,我们先求出两个点之间的差,再预处理出每个差有效作用范围。即用单调队列算出左边比它大的第一个数的位置,右边比它大的第一个数的位置,它的有效作用范围就是这之间。

    单调队列就不用说了吧?就一个单调递减的队列,每次遇到一个比末尾还大的数,说明尾部元素不符合最优,将他们扔掉,指针前移。后进来的影响范围更远,所以及时扔掉前面符合最优性。

    代码

    #include<bits/stdc++.h>
    using namespace std;
    #define N 100100
    #define ll long long
    ll n,m,l,r,top,ans;
    ll b[N],a[N],q[N],L[N],R[N];
    int main()
    {
        scanf("%lld%lld",&n,&m);
        for(ll i=1;i<=n;i++)scanf("%lld",&b[i]);
        for(ll i=2;i<=n;i++)a[i]=abs(b[i]-b[i-1]);
        q[0]=1;
        for(ll i=2;i<=n;i++){while(top&&a[q[top]]<=a[i])top--;L[i]=q[top];q[++top]=i;}
        q[top=0]=n+1;
        for(ll i=n;i>=2;i--){while(top&&a[q[top]]<=a[i])top--;R[i]=q[top];q[++top]=i;}
        while(m--)
        {
            scanf("%lld%lld",&l,&r);
            ans=0;
            for(ll i=l+1;i<=r;i++)
                ans+=a[i]*(i-max(l,L[i]))*(min(r+1,R[i])-i);
            printf("%lld
    ",ans);
        }
        return 0;
    }
    “Make my parents proud,and impress the girl I like.”
  • 相关阅读:
    【现代程序设计】【Homework01】
    Apache 关于 mod_rewrite 遇到 %2F或%5C (正反斜杠)等特殊符号导致URL重写失效出现404的问题
    PHP 使用CURL库IP欺骗,隐藏真实客户端IP
    php客服聊天回话系统,长连接加ajax轮询实现
    Which PHP version do I choose
    批量操作,向后台传数组
    angularjs的directive详解
    table中表头不动,表体产生滚动条
    3263232
    forEach、for+i、map的用法及区别
  • 原文地址:https://www.cnblogs.com/NSD-email0820/p/9814332.html
Copyright © 2020-2023  润新知