• Task3.PyTorch实现Logistic regression



    1.PyTorch基础实现代码

     1 import torch
     2 from torch.autograd import Variable
     3 
     4 torch.manual_seed(2)
     5 x_data = Variable(torch.Tensor([[1.0], [2.0], [3.0], [4.0]]))
     6 y_data = Variable(torch.Tensor([[0.0], [0.0], [1.0], [1.0]]))
     7 
     8 #初始化
     9 w = Variable(torch.Tensor([-1]), requires_grad=True)
    10 b = Variable(torch.Tensor([0]), requires_grad=True)
    11 epochs = 100
    12 costs = []
    13 lr = 0.1
    14 print("before training, predict of x = 1.5 is:")
    15 print("y_pred = ", float(w.data*1.5 + b.data > 0))
    16 
    17 #模型训练
    18 for epoch in range(epochs):
    19     #计算梯度
    20     A = 1/(1+torch.exp(-(w*x_data+b))) #逻辑回归函数
    21     J = -torch.mean(y_data*torch.log(A) + (1-y_data)*torch.log(1-A))  #逻辑回归损失函数
    22     #J = -torch.mean(y_data*torch.log(A) + (1-y_data)*torch.log(1-A)) +alpha*w**2
    23     #基础类进行正则化,加上L2范数
    24     costs.append(J.data)
    25     J.backward()  #自动反向传播
    26 
    27     #参数更新
    28     w.data = w.data - lr*w.grad.data
    29     w.grad.data.zero_()
    30     b.data = b.data - lr*b.grad.data
    31     b.grad.data.zero_()
    32 
    33 print("after training, predict of x = 1.5 is:")
    34 print("y_pred =", float(w.data*1.5+b.data > 0))
    35 print(w.data, b.data)


    2.用PyTorch类实现Logistic regression,torch.nn.module写网络结构

     1 import torch
     2 from torch.autograd import Variable
     3 
     4 x_data = Variable(torch.Tensor([[0.6], [1.0], [3.5], [4.0]]))
     5 y_data = Variable(torch.Tensor([[0.], [0.], [1.], [1.]]))
     6 
     7 class Model(torch.nn.Module):
     8     def __init__(self):
     9         super(Model, self).__init__()
    10         self.linear = torch.nn.Linear(1, 1) 
    11         self.sigmoid = torch.nn.Sigmoid()  ###### **sigmoid**
    12 
    13     def forward(self, x):
    14         y_pred = self.sigmoid(self.linear(x))
    15         return y_pred
    16 
    17 
    18 model = Model()
    19 
    20 
    21 criterion = torch.nn.BCELoss(size_average=True)        #损失函数
    22 optimizer = torch.optim.SGD(model.parameters(), lr=0.01)   # 随机梯度下降
    23 
    24 
    25 for epoch in range(500):
    26     # Forward pass
    27     y_pred = model(x_data)
    28 
    29     
    30     loss = criterion(y_pred, y_data)
    31     if epoch % 20 == 0:
    32         print(epoch, loss.item())
    33 
    34     #梯度归零
    35     optimizer.zero_grad()
    36     # 反向传播
    37     loss.backward()
    38     # update weights
    39     optimizer.step()
    40 
    41 hour_var = Variable(torch.Tensor([[0.5]]))
    42 print("predict (after training)", 0.5, model.forward(hour_var).data[0][0])
    43 hour_var = Variable(torch.Tensor([[7.0]]))
    44 print("predict (after training)", 7.0, model.forward(hour_var).data[0][0])

    参考:https://blog.csdn.net/ZZQsAI/article/details/90216593

  • 相关阅读:
    数据库设计
    Java各类格式转换
    Linux下如何查看tomcat是否启动/系统日志等
    string去空格
    Tomcat
    linux下的显示有中国农历的日历ccal
    Linux命令
    JSP学习-02隐式对象
    jQuery 遍历
    jQuery 隐藏效果
  • 原文地址:https://www.cnblogs.com/NPC-assange/p/11336736.html
Copyright © 2020-2023  润新知