• 常用数学知识


    组合数的一些性质

    [C_n^m=frac{n!}{(n-m)!m!}\ C_n^m=C_n^{n-m}\ C_n^m=C_{n-1}^{m-1}+C_{n-1}^m\ C_{m+r+1}^{r}=sum_{i=0}^rC_{m+i}^i\ ]

    [C_n^mC_m^r=frac{n!}{m!(n-m)!}.frac{m!}{r!(m-r)!}\ C_n^mC_m^r=frac{n!}{(n-m)!r!(m-r)!}\ C_n^mC_m^r=frac{n!(n-r)!}{r!(n-m)!(m-r)!(n-r)!}\ C_n^mC_m^r=frac{n!}{r!(n-r)!}frac{(n-r)!}{(n-m)!(m-r)!}\ n-m=n-r-(m-r)\ C_n^mC_m^r=C_n^rC_{n-r}^{m-r}\ ]

    [sum_{i=0}^nC_n^i=2^n ]

    (C_n^i)可以看做n位二进制数有x个0的数的方案数,推广一下:

    [sum_{i=0}^nC_n^ix^{n-i}=(x+1)^n ]

    [sum_{k=1}^nk^2={{k(k+1)(2k+1)}over 6}\ 使用数学归纳法证明\ f(1)=1={{1(1+1)(2+1)}over{6}}\ f(k)=sum_{k=1}^nk^2={{k(k+1)(2k+1)}over 6}\ f(k+1)=f(k)+(k+1)^2\ f(k+1)={{k(k+1)(2k+1)}over 6}+{{6(k+1)(k+1)}over{6}}\ f(k+1)={{(k+1)[k(2k+1)+6(k+1)]}over 6}\ f(k+1)={{(k+1)(2k^2+7k+6)}over 6}\ f(k+1)={{(k+1)(k+2)(2k+3)}over{6}}\ f(k+1)={{k+1[(k+1)+1][2(k+1)+1]} over 6}\ ]

    [sum_{k=1}^n a imes q^{k-1}=egin{cases} an\,\,\,\,\,\,\,\,\, q=1\{{a(1-q^n)} over {1-q}} \,\,\,\,\, q ot= 1 \ end{cases}\ S_n=sum_{k=1}^n a imes q^{k-1}\ qS_n=sum_{k=1}^n a imes q^k\ (1-q)S_n=a-a imes q^n\ S_n={{a(1-q^n)}over{1-q}} ]

    [sum_{i=1}^n i^3=[{{n(n+1)}over{2}}]^2\ 数学归纳法证明\ f(1)=[{{1(1+1)}over{2}}]^2=1\ f(n)=sum_{i=1}^n i^3=[{{n(n+1)}over{2}}]^2\ f(n+1)=f(n)+(n+1)^3\ f(n+1)=[{{n(n+1)}over{2}}]^2+(n+1)^3\ f(n+1)={{n^2(n+1)^2+4(n+1)^3}over 4}\ f(n+1)={{(n+1)^2(n^2+4n+4)}over 4}\ f(n+1)={{(n+1)^2(n+2)^2}over 4}\ f(n+1)=[{{(n+1)(n+2)}over{2}}]^2\ ]

    [(x+y)^n=sum_{k=0}^n {nchoose k}x^{n-k}y^k ]

  • 相关阅读:
    SGU 271 Book Pile (双端队列)
    POJ 3110 Jenny's First Exam (贪心)
    HDU 4310 Hero (贪心)
    ZOJ 2132 The Most Frequent Number (贪心)
    POJ 3388 Japanese Puzzle (二分)
    UVaLive 4628 Jack's socks (贪心)
    POJ 2433 Landscaping (贪心)
    CodeForces 946D Timetable (DP)
    Android Studio教程从入门到精通
    Android Tips – 填坑手册
  • 原文地址:https://www.cnblogs.com/NLDQY/p/10702251.html
Copyright © 2020-2023  润新知