Team Contests - Warmup
A
题意:...
思路:不会
代码:...
随机 B
题意:给n个点,问是否有一个圆上有最少n/3个点
思路:随机大法好。
代码:...
递推 C
题意:对自然数列{1,2,3,4,5,6...}进行n次操作,每次操作有一个x,意思是前x个保留,后x个删去,再x个保留,后x个删去。。。形成新的序列,问n次操作后第n个数字。
思路:(bh)我开始想二分答案,但是对于n次过程中就被删去的点就无法处理了。那么倒过来做就很方便,已知最后的位置是第n个,那么在第n次操作前的位置应该是,所以倒过来就做好了。结果可能爆long long,用Java写大数。
关键:逆序
代码:
import java.math.*; import java.io.*; import java.util.*; public class Main { static int[] a; public static void main(String[] args) { Scanner in = new Scanner (new BufferedInputStream (System.in)); int T = in.nextInt (); for (int cas=1; cas<=T; ++cas) { int n = in.nextInt (); a = new int[10005]; for (int i=1; i<=n; ++i) { a[i] = in.nextInt (); } BigInteger ans = BigInteger.valueOf(n); for (int i=n; i>=1; --i) { int f = 0; if(ans.mod(BigInteger.valueOf(a[i])).compareTo(BigInteger.ZERO) == 0) { f = 1; } BigInteger tmp = ans.divide(BigInteger.valueOf(a[i])).subtract(BigInteger.valueOf(f)).multiply(BigInteger.valueOf(a[i])); ans = ans.add(tmp); } System.out.println (ans); } } }
模拟 D
题意:炉石游戏
思路:坑。。。
代码:...
E
题意:麻将
思路:...
代码:...
离散化 F
题意:平面上有n个点,问有多少个不同位置的矩形,满足矩形四条边上的都正好有m个点。
思路:(bh)对点进行坐标离散化点归类,先从左上角开始找到在X容器里,按照y坐标排序后的前(m-1)个点,也就是左下角,同理可以找到右上角,然后从左下角和右上角出发去找右下角,看看是否重合,如果重合表示满足条件,计数即可。
代码:
ans1:
#include <bits/stdc++.h> using namespace std; const int N = 1e5 + 5; int n, m; struct Point { int x, y, id; }p[N]; struct Node { int v, id; bool operator < (const Node &rhs) const { return v < rhs.v; } }; std::vector<Node> X[N], Y[N]; int xs[N], ys[N]; int totx, toty; int solve() { sort (xs, xs+totx); totx = unique (xs, xs+totx) - xs; sort (ys, ys+toty); toty = unique (ys, ys+toty) - ys; for (int i=0; i<totx; ++i) { X[i].clear (); } for (int i=0; i<toty; ++i) { Y[i].clear (); } for (int i=1; i<=n; ++i) { int px = lower_bound (xs, xs+totx, p[i].x) - xs; int py = lower_bound (ys, ys+toty, p[i].y) - ys; X[px].push_back ((Node) {p[i].y, p[i].id}); Y[py].push_back ((Node) {p[i].x, p[i].id}); } for (int i=0; i<totx; ++i) { sort (X[i].begin (), X[i].end ()); } for (int i=0; i<toty; ++i) { sort (Y[i].begin (), Y[i].end ()); } int ret = 0; for (int i=1; i<=n; ++i) { Node tmp1 = (Node) {p[i].y, p[i].id}; int px = lower_bound (xs, xs+totx, p[i].x) - xs; int vpx = lower_bound (X[px].begin (), X[px].end (), tmp1) - X[px].begin (); if (vpx - m + 1 < 0) continue; int vpx1 = vpx - m + 1; int ty = X[px][vpx1].v; //(p[i].x, ty) Node tmp3 = (Node) {p[i].x, p[i].id}; int pyt = lower_bound (ys, ys+toty, ty) - ys; int vpyt = lower_bound (Y[pyt].begin (), Y[pyt].end (), tmp3) - Y[pyt].begin (); if (vpyt + m - 1 >= Y[pyt].size ()) continue; int vpyt2 = vpyt + m - 1; int x = Y[pyt][vpyt2].v, y = ty; Node tmp2 = (Node) {p[i].x, p[i].id}; int py = lower_bound (ys, ys+toty, p[i].y) - ys; int vpy = lower_bound (Y[py].begin (), Y[py].end (), tmp2) - Y[py].begin (); if (vpy + m - 1 >= Y[py].size ()) continue; int vpy2 = vpy + m - 1; int tx = Y[py][vpy2].v; //(tx, p[i].y) Node tmp4 = (Node) {p[i].y, p[i].id}; int pxt = lower_bound (xs, xs+totx, tx) - xs; //now int vpxt = lower_bound (X[pxt].begin (), X[pxt].end (), tmp4) - X[pxt].begin (); if (vpxt - m + 1 < 0) continue; int vpxt2 = vpxt - m + 1; int x2 = tx, y2 = X[pxt][vpxt2].v; if (x == x2 && y == y2) { ret++; } } return ret; } int main() { int T; scanf ("%d", &T); while (T--) { scanf ("%d%d", &n, &m); totx = toty = 0; for (int i=1; i<=n; ++i) { scanf ("%d%d", &p[i].x, &p[i].y); p[i].id = i; xs[totx++] = p[i].x; ys[toty++] = p[i].y; } printf ("%d\n", solve ()); } return 0; }
ans2(zcj)
#include<bits/stdc++.h> #define mk make_pair using namespace std; typedef long long LL; const int maxn = 300000 + 1000; int n, m; pair<int, int> xx[maxn]; vector<LL> v; vector<int> x[maxn]; vector<int> y[maxn]; map<pair<int, int>, int> p; int len; void solve(){ int cnt = 0; for (int i = 0; i < n; i++){ if (m <= 1) break; int tx = xx[i].first; int ty = xx[i].second; int lenx = x[tx].size(); //表示里面有几个y int leny = y[ty].size();//表示里面有几个x if (lenx < m) continue; if (leny < m) continue; //先找x上方的m-1个,里面放着y int py = lower_bound(x[tx].begin(), x[tx].end(), ty) - x[tx].begin();//在x的集合里面,y的位置 if (py + m > lenx) continue; int px = lower_bound(y[ty].begin(), y[ty].end(), tx) - y[ty].begin();//在y这个集合里面,x的位置 if (px + m > leny) continue; int posx = y[ty][px + m - 1]; int posy = x[tx][py + m - 1];//this? if (p[mk(posx, posy)]){ cnt++; } } printf("%d\n", cnt); } int main(){ int t; cin >> t; while (t--){ scanf("%d%d", &n, &m); for (int i = 0; i < n; i++){ LL a, b; scanf("%I64d%I64d", &a, &b); xx[i] = mk(a, b); v.push_back(a); v.push_back(b); } sort(v.begin(), v.end()); v.erase(unique(v.begin(), v.end()), v.end()); int lx = 0, ly = 0; for (int i = 0; i < n; i++){ int tx = xx[i].first = lower_bound(v.begin(), v.end(), xx[i].first) - v.begin(); int ty = xx[i].second = lower_bound(v.begin(), v.end(), xx[i].second) - v.begin(); //printf("%d %d\n", xx[i].first, xx[i].second); p[mk(tx, ty)] = 1; x[tx].push_back(ty); y[ty].push_back(tx); lx = max(lx, tx); ly = max(ly, ty); } for (int i = 0; i <= lx; i++){ sort(x[i].begin(), x[i].end()); } for (int i = 0; i <= ly; i++){ sort(y[i].begin(), y[i].end()); } solve(); //初始化 p.clear(); v.clear(); for (int i = 0; i <= lx; i++){ x[i].clear(); } for (int i = 0; i <= ly; i++){ y[i].clear(); } memset(xx, 0, sizeof(xx)); } return 0; }
G
题意:问[L, R]有多个数字的所有数位相加和是素数的个数。
思路:(bh)数位DP即可,写太着急,long long写成int。。。
代码:
#include <bits/stdc++.h> typedef long long ll; bool is_prime(int x) { if (x < 2) return false; if (x == 2 || x == 3) return true; if (x % 6 != 1 && x % 6 != 5) return false; for (int i=5; i*i<=x; i+=6) { if (x % i == 0 || x % (i + 2) == 0) return false; } return x != 1; } ll dp[20][10][200]; int bit[20]; ll DFS(int pos, int pre, int sum, bool limit) { if (pos == -1) { return is_prime (sum); } ll now = dp[pos][pre][sum]; if (now != -1 && !limit) { return now; } ll ret = 0; int d = limit ? bit[pos] : 9; for (int i=0; i<=d; ++i) { ret += DFS (pos - 1, i, sum + i, limit && i == d); } if (!limit) { dp[pos][pre][sum] = ret; } return ret; } ll solve(ll n) { if (n <= 0) { return 0; } int c = 0; for (; n>0; n/=10) bit[c++] = n % 10; return DFS (c - 1, 0, 0, true); } int main() { memset (dp, -1, sizeof (dp)); int T; scanf ("%d", &T); while (T--) { ll a, b; scanf ("%I64d%I64d", &a, &b); printf ("%I64d\n", solve (b) - solve (a - 1)); } return 0; }
H
题意:税收
思路:...
代码:...
I
题意:图论
思路:...
代码:...