• CF528D Fuzzy Search 【NTT】


    题目链接

    CF528D

    题解

    可以预处理出(S)每个位置能匹配哪些字符
    对每种字符
    构造两个序列
    如果(S[i])可以匹配该字符,则该位置为(0),否则为(1)
    如果(T[i])可以匹配该字符,则该位置为(1),否则为(0)
    (T)翻转一下做卷积
    如果某个字符意义下的某个位置为(1),就说明出现了(T)能匹配而(S)不能的情况,此时(T)不匹配(S)
    否则(T)匹配(S)
    即寻找有多少位置都为(0)

    #include<algorithm>
    #include<iostream>
    #include<cstdlib>
    #include<cstring>
    #include<cstdio>
    #include<vector>
    #include<queue>
    #include<cmath>
    #include<map>
    #define LL long long int
    #define REP(i,n) for (int i = 1; i <= (n); i++)
    #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
    #define cls(s,v) memset(s,v,sizeof(s))
    #define mp(a,b) make_pair<int,int>(a,b)
    #define cp pair<int,int>
    using namespace std;
    const int maxn = 800005,maxm = 100005,INF = 0x3f3f3f3f;
    inline int read(){
    	int out = 0,flag = 1; char c = getchar();
    	while (c < 48 || c > 57){if (c == '-') flag = 0; c = getchar();}
    	while (c >= 48 && c <= 57){out = (out << 1) + (out << 3) + c - 48; c = getchar();}
    	return flag ? out : -out;
    }
    const int G = 3,P = 998244353;
    inline int qpow(int a,int b){
    	int re = 1;
    	for (; b; b >>= 1,a = 1ll * a * a % P)
    		if (b & 1) re = 1ll * re * a % P;
    	return re;
    }
    int R[maxn],c[maxn];
    void NTT(int* a,int n,int f){
    	for (int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]);
    	for (int i = 1; i < n; i <<= 1){
    		int gn = qpow(G,(P - 1) / (i << 1));
    		for (int j = 0; j < n; j += (i << 1)){
    			int g = 1,x,y;
    			for (int k = 0; k < i; k++,g = 1ll * g * gn % P){
    				x = a[j + k],y = 1ll * g * a[j + k + i] % P;
    				a[j + k] = (x + y) % P,a[j + k + i] = (x + P - y) % P;
    			}
    		}
    	}
    	if (f == 1) return;
    	int nv = qpow(n,P - 2); reverse(a + 1,a + n);
    	for (int i = 0; i < n; i++) a[i] = 1ll * a[i] * nv % P;
    }
    void conv(int* a,int* b,int deg1,int deg2){
    	int n = 1,L = 0;
    	while (n <= (deg1 + deg2)) n <<= 1,L++;
    	for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
    	for (int i = 1; i <= deg2; i++) c[i] = b[i];
    	for (int i = deg2 + 1; i < n; i++) c[i] = 0; c[0] = 0;
    	NTT(a,n,1); NTT(c,n,1);
    	for (int i = 0; i < n; i++) a[i] = 1ll * a[i] * c[i] % P;
    	NTT(a,n,-1);
    }
    int A[4][maxn],B[4][maxn];
    char ss[maxn],tt[maxn];
    int N,M,K,last[4],S[maxn],T[maxn];
    int id(char c){
    	if (c == 'A') return 0;
    	if (c == 'C') return 1;
    	if (c == 'G') return 2;
    	return 3;
    }
    int main(){
    	N = read(); M = read(); K = read();
    	scanf("%s%s",ss + 1,tt + 1); reverse(tt + 1,tt + 1 + M);
    	REP(i,N) S[i] = id(ss[i]);
    	REP(i,M) T[i] = id(tt[i]);
    	REP(i,N) for (int j = 0; j < 4; j++) A[j][i] = 1; 
    	for (int i = 1; i <= N; i++){
    		last[S[i]] = i;
    		for (int j = 0; j < 4; j++){
    			if (last[j] && i - last[j] <= K) A[j][i] = 0;
    		}
    	}
    	for (int j = 0; j < 4; j++) last[j] = 0;
    	for (int i = N; i; i--){
    		last[S[i]] = i;
    		for (int j = 0; j < 4; j++){
    			if (last[j] && last[j] - i <= K) A[j][i] = 0;
    		}
    	}
    	for (int i = 1; i <= M; i++){
    		for (int j = 0; j < 4; j++){
    			if (T[i] == j) B[j][i] = 1;
    			else B[j][i] = 0;
    		}
    	}
    	for (int j = 0; j < 4; j++) conv(A[j],B[j],N,M);
    	int ans = 0;
    	for (int i = 1 + M; i <= N + 1; i++){
    		int flag = 1;
    		for (int j = 0; j < 4; j++) if (A[j][i]){flag = 0; break;}
    		ans += flag;
    	}
    	printf("%d
    ",ans);
    	return 0;
    }
    
    
  • 相关阅读:
    ASP.NET获取客户端IP地址Marc地址
    WPF(MultiBinding 数据对比验证,启用提交)
    WPF(Binding of ObjectDataProvider)
    WPF(附加属性 Slider)
    WPF(Binding of ItemsControl)
    WPF( 数据验证)
    WPF(依赖属性)
    WPF(附加属性)
    WPF(Binding of RelativeSource)
    WPF(Binding of LinQ)
  • 原文地址:https://www.cnblogs.com/Mychael/p/9309856.html
Copyright © 2020-2023  润新知