• 51nod1229 序列求和 V2 【数学】


    题目链接

    B51nod1229

    题解

    我们要求

    [sumlimits_{i = 1}^{n}i^{k}r^{i} ]

    如果(r = 1),就是自然数幂求和,上伯努利数即可(O(k^2))
    否则,我们需要将式子进行变形
    要与(n)无关

    [F(k) = sumlimits_{i = 1}^{n} i^{k}r^{i} ]

    自然数幂应该是不用去动了,两边乘个(r)

    [rF(k) = sumlimits_{i = 2}^{n + 1}r^{i}(i - 1)^{k} ]

    相减得

    [egin{aligned} (r - 1)F(k) &= r^{n + 1}n^{k} - r + sumlimits_{i = 2}^{n}r^{i}((i - 1)^{k} - i^{k}) \ &= r^{n + 1}n^{k} - r + sumlimits_{i = 2}^{n}r^{i}(sumlimits_{j = 0}^{k}{k choose j}(-1)^{k - j}i^{j} - i^{k}) \ &= r^{n + 1}n^{k} - r + sumlimits_{i = 2}^{n}r^{i}sumlimits_{j = 0}^{k - 1}{k choose j}(-1)^{k - j}i^{j} \ &= r^{n + 1}n^{k} - r + sumlimits_{i = 2}^{n}sumlimits_{j = 0}^{k - 1}{k choose j}(-1)^{k - j}i^{j}r^{i} \ &= r^{n + 1}n^{k} - r + sumlimits_{j = 0}^{k - 1}{k choose j}(-1)^{k - j}sumlimits_{i = 2}^{n}i^{j}r^{i} \ &= r^{n + 1}n^{k} - r + sumlimits_{j = 0}^{k - 1}{k choose j}(-1)^{k - j}(F(j) - r) \ end{aligned} ]

    [F(k) = frac{r^{n + 1}n^{k} - r + sumlimits_{j = 0}^{k - 1}{k choose j}(-1)^{k - j}(F(j) - r)}{r - 1} ]

    边界

    [F(0) = sumlimits_{i = 1}^{n}r^{i} = rfrac{r^{n} - 1}{r -1} ]

    同样可以实现(O(k^2))递推

    #include<algorithm>
    #include<iostream>
    #include<cstdlib>
    #include<cstring>
    #include<cstdio>
    #include<vector>
    #include<queue>
    #include<cmath>
    #include<map>
    #define LL long long int
    #define REP(i,n) for (int i = 1; i <= (n); i++)
    #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
    #define cls(s,v) memset(s,v,sizeof(s))
    #define mp(a,b) make_pair<int,int>(a,b)
    #define cp pair<int,int>
    using namespace std;
    const int maxn = 2010,maxm = 100005,INF = 0x3f3f3f3f;
    inline LL read(){
    	LL out = 0,flag = 1; char c = getchar();
    	while (c < 48 || c > 57){if (c == '-') flag = 0; c = getchar();}
    	while (c >= 48 && c <= 57){out = (out << 1) + (out << 3) + c - 48; c = getchar();}
    	return flag ? out : -out;
    }
    const int P = 1000000007;
    LL F[maxn],B[maxn],fac[maxn],inv[maxn],fv[maxn],N = 2005;
    inline LL qpow(LL a,LL b){
    	LL re = 1; a %= P;
    	for (; b; b >>= 1,a = 1ll * a * a % P)
    		if (b & 1) re = 1ll * re * a % P;
    	return re;
    }
    inline LL C(LL n,LL m){
    	if (m > n) return 0;
    	return 1ll * fac[n] * fv[m] % P * fv[n - m] % P;
    }
    void init(){
    	fac[0] = fac[1] = fv[0] = fv[1] = inv[0] = inv[1] = 1;
    	for (int i = 2; i <= N; i++){
    		fac[i] = fac[i - 1] * i % P;
    		inv[i] = 1ll * (P - P / i) * inv[P % i] % P;
    		fv[i] = fv[i - 1] * inv[i] % P;
    	}
    	B[0] = 1;
    	for (int k = 1; k < N; k++){
    		for (int i = 0; i < k; i++)
    			B[k] = (B[k] + C(k + 1,i) * B[i] % P) % P;
    		B[k] = 1ll * (P - 1) * inv[k + 1] % P * B[k] % P;
    	}
    }
    LL n,K,r;
    void work1(){
    	n %= P;
    	LL tmp = n,ans = 0;
    	for (int i = K; ~i; i--){
    		ans = (ans + C(K + 1,i) * B[i] % P * tmp % P) % P;
    		tmp = tmp * n % P;
    	}
    	ans = ans * inv[K + 1] % P;
    	printf("%lld
    ",(ans + qpow(n,K)) % P);
    }
    void work2(){
    	r %= P;
    	LL tmp = qpow(r,n + 1),t,tt = 1,rv = qpow(r - 1,P - 2);
    	F[0] = 1ll * (qpow(r,n) + P - 1) % P * rv % P * r % P;
    	for (int k = 1; k <= K; k++){
    		t = 0; tt = 1ll * tt * (n % P) % P;
    		for (int j = 0; j < k; j++)
    			t = (t + (((k - j) & 1) ? -1ll : 1ll) * C(k,j) * ((F[j] - r) % P) % P) % P;
    		t = (t + P) % P;
    		F[k] = ((tmp * tt % P - r) % P + t) % P * rv % P;
    	}
    	printf("%lld
    ",(F[K] + P) % P);
    }
    int main(){
    	init();
    	int T = read();
    	while (T--){
    		n = read(); K = read(); r = read();
    		if (r == 1) work1();
    		else work2();
    	}
    	return 0;
    }
    
    
  • 相关阅读:
    ES6对象的扩展
    ES6函数的扩展
    ES6新增变量
    ES6框架的搭建
    自适应布局 左右结构、上下结构
    iframe 子页面改变父页面样式
    检测终端类型
    $.grep()
    点击元素内部不隐藏,点击元素外部元素隐藏
    angular表单验证
  • 原文地址:https://www.cnblogs.com/Mychael/p/9296868.html
Copyright © 2020-2023  润新知