• BZOJ3836 [Poi2014]Tourism 【树形dp +状压dp】


    题目链接

    BZOJ3836

    题解

    显然这是个(NP)完全问题,此题的解决全仗任意两点间不存在节点数超过10的简单路径的性质
    这意味着什么呢?
    (dfs)树深度不超过(10)
    (10)很小呐,可以状压了呢

    我们发现一个点不但收祖先影响,而且受儿子影响,比较难处理
    我们就先处理该点及其祖先,然后更新完儿子之后反过来用儿子更新根,就使得全局合法了
    一个点显然有三种状态:
    0.没被覆盖
    1.被覆盖但是没有建站
    2.建站

    (f[d][s])表示节点(u)【深度为(d)】,其祖先【包括(u)】状态为(s)的最优解
    (dfs)进来的时候,我们用父亲的答案更新(u)
    (dfs)结束的时候,我们用儿子的答案替代(u)的答案,保证全局合法

    复杂度(O((n + m)3^{10}))

    #include<algorithm>
    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<cmath>
    #include<map>
    #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
    #define REP(i,n) for (int i = 1; i <= (n); i++)
    #define mp(a,b) make_pair<int,int>(a,b)
    #define cls(s) memset(s,0,sizeof(s))
    #define cp pair<int,int>
    #define LL long long int
    using namespace std;
    const int maxn = 20005,maxm = 50005,M = 59050,INF = 1000000000;
    inline int read(){
    	int out = 0,flag = 1; char c = getchar();
    	while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
    	while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
    	return out * flag;
    }
    int h[maxn],ne = 1;
    int n,m,C[maxn],dep[maxn],vis[maxn],bin[100];
    int f[11][M],st[maxn],top;  //0 not yet    1 ok but empty    2 ok and full
    struct EDGE{int to,nxt;}ed[maxm];
    inline void build(int u,int v){
    	ed[++ne] = (EDGE){v,h[u]}; h[u] = ne;
    	ed[++ne] = (EDGE){u,h[v]}; h[v] = ne;
    }
    inline int min(int a,int b){return a < b ? a : b;}
    void dfs(int u){
    	vis[u] = true;
    	int maxv = bin[dep[u]] - 1,d = dep[u]; top = 0;
    	for (int i = 0; i < bin[dep[u] + 1]; i++) f[d][i] = INF;
    	Redge(u) if (vis[to = ed[k].to]) st[++top] = dep[to];
    	if (!d) f[0][0] = 0,f[0][1] = INF,f[0][2] = C[u];
    	for (int s = 0; s <= maxv; s++){
    		int t = 0,v,p,e = s + 2 * bin[d];
    		REP(i,top){
    			v = st[i]; p = s / bin[v] % 3;
    			if (p == 2) t = 1;
    			else if (!p) e += bin[v];
    		}
    		f[d][s + t * bin[d]] = min(f[d][s + t * bin[d]],f[d - 1][s]);
    		f[d][e] = min(f[d][e],f[d - 1][s] + C[u]);
    	}
    	Redge(u) if (!vis[to = ed[k].to]){
    		dep[to] = dep[u] + 1;
    		dfs(to);
    		for (int s = 0; s < bin[d + 1]; s++)
    			f[d][s] = min(f[d + 1][s + bin[d + 1]],f[d + 1][s + 2 * bin[d + 1]]);
    	}
    }
    int main(){
    	bin[0] = 1; for (int i = 1; i <= 13; i++) bin[i] = bin[i - 1] * 3;
    	n = read(); m = read();
    	REP(i,n) C[i] = read();
    	while (m--) build(read(),read());
    	int ans = 0;
    	for (int i = 1; i <= n; i++)
    		if (!vis[i]) dfs(i),ans += min(f[0][1],f[0][2]);
    	printf("%d
    ",ans);
    	return 0;
    }
    
    
  • 相关阅读:
    《Eclipse中的一些快捷键》
    《Java中的抽象类及抽象类的作用》
    《Java中的不可变类》
    《final修饰基本类型变量和引用类型变量的区别》
    《类成员案例》
    《Java中的单例模式--两种》
    《Java中的自动装箱和拆箱功能.》
    Chrome 经典插件
    Sublimeの虚拟环境(Venv)设置
    HTTP下午茶
  • 原文地址:https://www.cnblogs.com/Mychael/p/9242817.html
Copyright © 2020-2023  润新知