• BZOJ3451 Tyvj1953 Normal 【期望 + 点分治 + NTT】


    题目链接

    BZOJ3451

    题解

    考虑每个点产生的贡献,即为该点在点分树中的深度期望值
    由于期望的线性,最后的答案就是每个点贡献之和

    对于点对((i,j)),考虑(j)成为(i)祖先的概率,记为(P(i,j))
    那么

    [ans = sumlimits_{i = 1}^{n}sumlimits_{j = 1}^{n} P(i,j) ]

    由于是随机选点,(i)(j)路径上所有点第一个被选中的除非是(j),否则(j)就不是(i)的祖先
    由于是随机的,所以(P(i,j) = frac{1}{dis(i,j)})
    综上

    [ans = sumlimits_{i = 1}^{n}sumlimits_{j = 1}^{n} frac{1}{dis(i,j)} ]

    为了方便计算,我们可以枚举(dis),计算有多少个长度为(dis)的点对
    直接枚举 + 点分是(O(n^2logn))的,我们考虑能不能一起算
    当然可以,两个子树之间的贡献合并实际上就是一个生成函数乘积

    我们对于一棵分治树,先求出整棵树各个深度数量数列形成的生成函数,平方一次
    由于会包含回到同一个子树的情况,在向子树求一遍减去即可

    这样就优化成了(O(nlog^2n))

    #include<algorithm>
    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<cmath>
    #include<map>
    #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
    #define REP(i,n) for (int i = 1; i <= (n); i++)
    #define mp(a,b) make_pair<int,int>(a,b)
    #define cls(s) memset(s,0,sizeof(s))
    #define cp pair<int,int>
    #define LL long long int
    using namespace std;
    const int maxn = 150005,maxm = 100005,INF = 1000000000;
    inline int read(){
    	int out = 0,flag = 1; char c = getchar();
    	while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
    	while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
    	return out * flag;
    }
    int n,h[maxn],ne = 1;
    struct EDGE{int to,nxt;}ed[maxn];
    inline void build(int u,int v){
    	ed[++ne] = (EDGE){v,h[u]}; h[u] = ne;
    	ed[++ne] = (EDGE){u,h[v]}; h[v] = ne;
    }
    const int G = 3,P = 998244353;
    int R[maxn];
    inline int qpow(int a,int b){
    	int re = 1;
    	for (; b; b >>= 1,a = 1ll * a * a % P)
    		if (b & 1) re = 1ll * re * a % P;
    	return re;
    }
    void NTT(int* a,int n,int f){
    	for (int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]);
    	for (int i = 1; i < n; i <<= 1){
    		int gn = qpow(G,(P - 1) / (i << 1));
    		for (int j = 0; j < n; j += (i << 1)){
    			int g = 1,x,y;
    			for (int k = 0; k < i; k++,g = 1ll * g * gn % P){
    				x = a[j + k],y = 1ll * g * a[j + k + i] % P;
    				a[j + k] = (x + y) % P,a[j + k + i] = ((x - y) % P + P) % P;
    			}
    		}
    	}
    	if (f == 1) return;
    	int nv = qpow(n,P - 2); reverse(a + 1,a + n);
    	for (int i = 0; i < n; i++) a[i] = 1ll * a[i] * nv % P;
    }
    LL ans[maxn];
    int F[maxn],fa[maxn],siz[maxn],vis[maxn],N,rt;
    void getrt(int u){
    	siz[u] = 1; F[u] = 0;
    	Redge(u) if (!vis[to = ed[k].to] && to != fa[u]){
    		fa[to] = u; getrt(to);
    		siz[u] += siz[to];
    		F[u] = max(F[u],siz[to]);
    	}
    	F[u] = max(F[u],N - siz[u]);
    	if (F[u] < F[rt]) rt = u;
    }
    int dep[maxn],md;
    int A[maxn],B[maxn];
    void dfs(int u){
    	A[dep[u]]++; siz[u] = 1; md = max(md,dep[u]);
    	Redge(u) if (!vis[to = ed[k].to] && to != fa[u]){
    		fa[to] = u; dep[to] = dep[u] + 1; dfs(to);
    		siz[u] += siz[to];
    	}
    }
    void dfs1(int u){
    	B[dep[u]]++; md = max(md,dep[u]);
    	Redge(u) if (!vis[to = ed[k].to] && to != fa[u])
    		dfs1(to);
    }
    void solve(int u){
    	vis[u] = true; siz[u] = N; fa[u] = 0;
    	for (int i = 0; i <= N; i++) A[i] = B[i] = 0;
    	dep[u] = 0; A[0] = 1; md = 0;
    	Redge(u) if (!vis[to = ed[k].to]){
    		fa[to] = u; dep[to] = 1; dfs(to);
    	}
    	int m = (md << 1),L = 0,n = 1;
    	while (n <= m) n <<= 1,L++;
    	for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
    	for (int i = md + 1; i < n; i++) A[i] = 0;
    	NTT(A,n,1);
    	for (int i = 0; i < n; i++) A[i] = 1ll * A[i] * A[i] % P;
    	NTT(A,n,-1);
    	for (int i = 0; i < n; i++) ans[i + 1] += 1ll * A[i];
    	Redge(u) if (!vis[to = ed[k].to]){
    		md = 1; dfs1(to);
    		m = (md << 1),L = 0,n = 1;
    		while (n <= m) n <<= 1,L++;
    		for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
    		NTT(B,n,1);
    		for (int i = 0; i < n; i++) B[i] = 1ll * B[i] * B[i] % P;
    		NTT(B,n,-1);
    		for (int i = 0; i < n; i++) ans[i + 1] -= 1ll * B[i];
    		for (int i = 0; i < n; i++) B[i] = 0;
    	}
    	Redge(u) if (!vis[to = ed[k].to]){
    		N = siz[to]; F[rt = 0] = INF; getrt(to);
    		solve(rt);
    	}
    }
    int main(){
    	n = read();
    	for (int i = 1; i < n; i++) build(read() + 1,read() + 1);
    	F[rt = 0] = INF; N = n; getrt(1);
    	solve(rt);
    	double Ans = 0;
    	//REP(i,n) printf("dis %d  cnt %lld
    ",i,ans[i]);
    	for (int i = 1; i <= n; i++) Ans += 1.0 / i * ans[i];
    	printf("%.4lf
    ",Ans);
    	return 0;
    }
    
    
  • 相关阅读:
    基于RBAC的权限设计模型
    RBAC用户权限管理数据库设计
    系统多语言实践(二)
    多语言系统的数据库设计
    系统多语言实践(一)
    企业后台模板
    MYSQL
    JS,Jquery
    BootStrap
    KindEditor
  • 原文地址:https://www.cnblogs.com/Mychael/p/9162644.html
Copyright © 2020-2023  润新知