• BZOJ2277 [Poi2011]Strongbox 【数论】


    题目链接

    BZOJ2277

    题解

    orz太难了

    如果一个数(x)是密码,那么所有((x,n))的倍数都是密码
    如果两个数(x,y)是密码,那么所有((x,y))的倍数都是密码

    那么如果最后的密码集合为({x_i})那么一定存在一个(x_i)是剩余所有数的(gcd)
    所以我们只需找最小的(x | n)(x | a_k)(x mid a_i)

    那就找出((a_k,n))的所有质因子,再用((a_i,a_k,n))筛去不合法的即可

    #include<algorithm>
    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<cmath>
    #include<map>
    #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
    #define REP(i,n) for (int i = 1; i <= (n); i++)
    #define mp(a,b) make_pair<int,int>(a,b)
    #define cls(s) memset(s,0,sizeof(s))
    #define cp pair<int,int>
    #define LL long long int
    using namespace std;
    const int maxn = 1000005,maxm = 10000005,INF = 1000000000;
    inline LL read(){
    	LL out = 0,flag = 1; char c = getchar();
    	while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
    	while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
    	return out * flag;
    }
    LL n,k,a[maxn],L,fac[maxn],p[maxn],tot,cnt;
    int vis[maxn];
    LL gcd(LL a,LL b){return b ? gcd(b,a % b) : a;}
    void getfac(){
    	LL x,tmp = L;
    	for (x = 1; x * x <= tmp; x++){
    		if (tmp % x == 0){
    			fac[++tot] = x;
    			if (x * x != tmp) fac[++tot] = tmp / x;
    		}
    	}
    	sort(fac + 1,fac + 1 + tot);
    }
    void getp(){
    	LL x,tmp = L;
    	for (x = 2; x * x <=tmp; x++)
    		if (tmp % x == 0){
    			p[++cnt] = x;
    			while (tmp % x == 0) tmp /= x;
    		}
    	if (tmp - 1) p[++cnt] = tmp;
    }
    int main(){
    	n = read(); k = read();
    	REP(i,k) a[i] = read();
    	L = gcd(n,a[k]);
    	getfac(); getp();
    	LL x;
    	for (int i = 1; i < k; i++){
    		x = gcd(a[i],L);
    		vis[lower_bound(fac + 1,fac + 1 + tot,x) - fac] = true;
    	}
    	for (int i = tot - 1; i; i--){
    		if (vis[i]) continue;
    		x = fac[i];
    		for (int j = 1; j <= cnt && x * p[j] <= L; j++){
    			LL y = x * p[j];
    			int pos = lower_bound(fac + 1,fac + 1 + tot,y) - fac;
    			if (fac[pos] == y && vis[pos]){
    				vis[i] = true;
    				break;
    			}
    		}
    	}
    	LL ans = 0;
    	for (int i = 1; i <= tot; i++)
    		if (!vis[i]){ans = n / fac[i]; break;}
    	printf("%lld
    ",ans);
    	return 0;
    }
    
    
  • 相关阅读:
    Oracle expdp 多表导出处理
    字符串
    Java设计模式
    多线程
    Java面向对象练习
    Java面向对象基础
    Java基础算法
    Java常识
    DOS基础命令(1)
    Java基础练习
  • 原文地址:https://www.cnblogs.com/Mychael/p/9117144.html
Copyright © 2020-2023  润新知