• BZOJ3243 [Noi2013]向量内积 【乱搞】


    题目链接

    BZOJ3243

    题解

    模数只有(2)(3),可以大力讨论

    如果模数为(2),乘积结果只有(1)(0)
    如果一个向量和前面所有向量乘积都为(1),那么其和前面向量前缀和的乘积就唯一确定
    我们维护向量前缀和,第一个乘积情况不符的向量一定是答案,然后再枚举另一个向量即
    (O(nd))

    如果模数为(3),乘积如果不为(0),还可以为(1)(2),我们讨论的方法就不适用了
    其实还是可以的

    [1^2 = 2^2 = 1 pmod 3 ]

    我们只要维护平方和即可

    如何维护平方和?

    [(sumlimits_{i = 1}^{d} a_ib_i)^2 = sumlimits_{i = 1}^{d} sumlimits_{j = 1}^{d} a_ia_jb_ib_j ]

    就相当于原来的(d)维向量变成了(d^2)维,(O(nd^2))也是可以过的

    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<ctime>
    #include<cstring>
    #include<algorithm>
    #define LL long long int
    #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
    #define REP(i,n) for (int i = 1; i <= (n); i++)
    #define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
    using namespace std;
    const int maxn = 100005,maxm = 105,INF = 1000000000;
    inline int read(){
    	int out = 0,flag = 1; char c = getchar();
    	while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
    	while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
    	return out * flag;
    }
    int n,d,P;
    int a[maxn][maxm],id[maxn];
    int sum[maxm],Sum[maxm][maxm];
    int mult(int* a,int* b){
    	int re = 0;
    	for (int i = 1; i <= d; i++) re = (re + a[i] * b[i] % P) % P;
    	return re;
    }
    int Mult(int a[],int b[][maxm]){
    	int re = 0;
    	for (int i = 1; i <= d; i++)
    		for (int j = 1; j <= d; j++)
    			re = (re + a[i] * a[j] * b[i][j] % P) % P;
    	return re;
    }
    void solve1(){
    	for (int i = 1; i <= d; i++) sum[i] = a[id[1]][i];
    	for (int i = 2; i <= n; i++){
    		int t = mult(a[id[i]],sum);
    		if (t != ((i - 1) & 1)){
    			for (int k = 1; k < i; k++)
    				if (!mult(a[id[k]],a[id[i]])){
    					printf("%d %d
    ",min(id[k],id[i]),max(id[i],id[k]));
    					break;
    				}
    			return;
    		}
    		for (int j = 1; j <= d; j++) sum[j] = (sum[j] + a[id[i]][j]) % P;
    	}
    	printf("-1 -1
    ");
    }
    void solve2(){
    	for (int i = 1; i <= d; i++)
    		for (int j = 1; j <= d; j++)
    			Sum[i][j] = a[id[1]][i] * a[id[1]][j] % P;
    	for (int i = 2; i <= n; i++){
    		int t = Mult(a[id[i]],Sum);
    		if (t != (i - 1) % P){
    			for (int k = 1; k < i; k++)
    				if (!mult(a[id[k]],a[id[i]])){
    					printf("%d %d
    ",min(id[k],id[i]),max(id[i],id[k]));
    					break;
    				}
    			return;
    		}
    		for (int j = 1; j <= d; j++)
    			for (int k = 1; k <= d; k++)
    				Sum[j][k] = (Sum[j][k] + a[id[i]][j] * a[id[i]][k] % P) % P;
    	}
    	printf("-1 -1
    ");
    }
    int main(){
    	srand(time(NULL));
    	n = read(); d = read(); P = read();
    	for (int i = 1; i <= n; i++)
    		for (int j = 1; j <= d; j++)
    			a[i][j] = read() % P;
    	for (int i = 1; i <= n; i++) id[i] = i;
    	random_shuffle(id + 1,id + 1 + n);
    	if (P == 2) solve1();
    	else solve2();
    	return 0;
    }
    
    
  • 相关阅读:
    web攻击
    HTTP与HTTPS
    HTTP确认访问用户身份的认证
    Http协议(三)返回结果的HTTP状态码
    HTTP协议四(http首部)
    HTTP协议(二)报文信息
    HTTP协议(一)
    Windows10 如何设置软件开机自起动和关闭
    获取Chrome版本并下载匹配的chromedriver
    多线程Runnable
  • 原文地址:https://www.cnblogs.com/Mychael/p/9060640.html
Copyright © 2020-2023  润新知