• BZOJ3456 城市规划 【分治NTT】


    题目链接

    BZOJ3456

    题解

    据说这题是多项式求逆
    我太弱不会QAQ,只能(O(nlog^2n))分治(NTT)

    (f[i])表示(i)个节点的简单无向连通图的数量
    考虑转移,直接求不好求,我们知道(n)个点无向图的数量是(2^{{n choose 2}})的,考虑用总数减去不连通的
    既然图不连通,那么和(1)号点联通的点数一定小于(n),我们枚举和(1)号点所在联通块大小,就可以得到式子:

    [f[n] = 2^{{n choose 2}} - sumlimits_{i = 1}^{n - 1}{n - 1 choose i - 1}2^{{n - i choose 2}}f[i] ]

    展开组合数变形得:

    [f[n] = 2^{{n choose 2}} - (n - 1)!sumlimits_{i = 1}^{n - 1}frac{f[i] * i}{i!} * frac{2^{n - i choose 2}}{(n - i)!} ]

    分治NTT即可

    #include<algorithm>
    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<cmath>
    #define REP(i,n) for (int i = 1; i <= (n); i++)
    #define cls(s) memset(s,0,sizeof(s))
    #define LL long long int
    #define res register
    using namespace std;
    const int maxn = 500000,maxm = 100005,INF = 1000000000,P = 1004535809;
    const int G = 3;
    int N,f[maxn],fac[maxn],fv[maxn],inv[maxn],C2[maxn];
    int A[maxn],B[maxn],R[maxn],w[2][maxn],L,n,m;
    inline int qpow(int a,LL b){
    	int ans = 1;
    	for (; b; b >>= 1,a = 1ll * a * a % P)
    		if (b & 1) ans = 1ll * ans * a % P;
    	return ans;
    }
    inline void NTT(int* a,int f){
    	for (res int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]);
    	for (res int i = 1; i < n; i <<= 1){
    		int gn = w[f][i];
    		for (res int j = 0; j < n; j += (i << 1)){
    			int g = 1,x,y;
    			for (res int k = 0; k < i; k++,g = 1ll * g * gn % P){
    				x = a[j + k]; y = 1ll * g * a[j + k + i] % P;
    				a[j + k] = (x + y) % P; a[j + k + i] = (x - y + P) % P;
    			}
    		}
    	}
    	if (f == 1) return;
    	int nv = qpow(n,P - 2);
    	for (res int i = 0; i < n; i++) a[i] = 1ll * a[i] * nv % P;
    }
    void solve(int l,int r){
    	if (l == r){
    		f[l] = ((C2[l] - 1ll * fac[l - 1] * f[l] % P) % P + P) % P;
    		return;
    	}
    	int mid = l + r >> 1,t;
    	solve(l,mid);
    	m = (mid - l) + (r - l); L = 0;
    	for (n = 1; n <= m; n <<= 1) L++;
    	for (int i = 0; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
    	for (int i = 0; i < n; i++) A[i] = B[i] = 0;
    	t = mid - l + 1;
    	for (int i = 0; i < t; i++)
    		A[i] = 1ll * f[l + i] * fv[l + i - 1] % P;
    	t = r - l;
    	B[0] = 0; for (int i = 1; i <= t; i++)
    		B[i] = 1ll * C2[i] * fv[i] % P;
    	NTT(A,1); NTT(B,1);
    	for (int i = 0; i < n; i++) A[i] = 1ll * A[i] * B[i] % P;
    	NTT(A,0);
    	for (int i = mid + 1; i <= r; i++){
    		f[i] = (f[i] + A[i - l]) % P;
    	}
    	solve(mid + 1,r);
    }
    int main(){
    	scanf("%d",&N);
    	fac[0] = fac[1] = inv[0] = inv[1] = fv[0] = fv[1] = 1;
    	for (res int i = 2; i <= N; i++){
    		fac[i] = 1ll * fac[i - 1] * i % P;
    		inv[i] = 1ll * (P - P / i) * inv[P % i] % P;
    		fv[i] = 1ll * fv[i - 1] * inv[i] % P;
    	}
    	for (res int i = 1; i <= N; i++){
    		C2[i] = qpow(2,1ll * i * (i - 1) / 2);
    	}
    	for (res int i = 1; i < maxn; i <<= 1){
    		w[1][i] = qpow(G,(P - 1) / (i << 1));
    		w[0][i] = qpow(G,(-(P - 1) / (i << 1) % (P - 1) + (P - 1)) % (P - 1));
    	}
    	solve(1,N);
    	printf("%d
    ",f[N]);
    	return 0;
    }
    
    
  • 相关阅读:
    怎样绘制一个三角形边框
    怎样绘制一条线段
    怎样绘制矩形
    怎样判断浏览器是否支持canvas
    怎样创建一个canvas画布环境
    怎样理解Canvas
    怎样删除一条Cookie
    怎样在浏览器端增加一条Cookie
    怎样限制第三方Cookie
    怎样理解第三方Cookie
  • 原文地址:https://www.cnblogs.com/Mychael/p/9029410.html
Copyright © 2020-2023  润新知