• BZOJ4556 [Tjoi2016&Heoi2016]字符串 【后缀数组 + 主席树 + 二分 + ST表】


    题目

    佳媛姐姐过生日的时候,她的小伙伴从某东上买了一个生日礼物。生日礼物放在一个神奇的箱子中。箱子外边写了
    一个长为n的字符串s,和m个问题。佳媛姐姐必须正确回答这m个问题,才能打开箱子拿到礼物,升职加薪,出任CE
    O,嫁给高富帅,走上人生巅峰。每个问题均有a,b,c,d四个参数,问你子串s[a..b]的所有子串和s[c..d]的最长公
    共前缀的长度的最大值是多少?佳媛姐姐并不擅长做这样的问题,所以她向你求助,你该如何帮助她呢?

    输入格式

    输入的第一行有两个正整数n,m,分别表示字符串的长度和询问的个数。接下来一行是一个长为n的字符串。接下来
    m行,每行有4个数a,b,c,d,表示询问s[a..b]的所有子串和s[c..d]的最长公共前缀的最大值。1<=n,m<=100,000,
    字符串中仅有小写英文字母,a<=b,c<=d,1<=a,b,c,d<=n

    输出格式

    对于每一次询问,输出答案。

    输入样例

    5 5

    aaaaa

    1 1 1 5

    1 5 1 1

    2 3 2 3

    2 4 2 3

    2 3 2 4

    输出样例

    1

    1

    2

    2

    2

    题解

    一开始看错题,,原来是要求s[a...b]所有子串和子串s[c...d]的最大LCP【注意s[c...d]只是一个字符串】
    那么我们二分一下答案
    就需要快速判断子串c的height分组中是否存在子串s[a...b]
    这个拿主席树记录位置存在信息就可以做到
    height分组的边界可以倍增用ST表判断
    还要注意不要越过子串的边界

    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<cstring>
    #include<algorithm>
    #define LL long long int
    #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
    #define REP(i,n) for (int i = 1; i <= (n); i++)
    #define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
    using namespace std;
    const int maxn = 200005,maxm = 6000005,INF = 1000000000;
    inline int read(){
    	int out = 0,flag = 1; char c = getchar();
    	while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
    	while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
    	return out * flag;
    }
    int n,q;
    char s[maxn];
    int sa[maxn],rank[maxn],height[maxn],t1[maxn],t2[maxn],bac[maxn],m;
    void getSA(){
    	int *x = t1,*y = t2; m = 256;
    	for (int i = 0; i <= m; i++) bac[i] = 0;
    	for (int i = 1; i <= n; i++) bac[x[i] = s[i]]++;
    	for (int i = 1; i <= m; i++) bac[i] += bac[i - 1];
    	for (int i = n; i; i--) sa[bac[x[i]]--] = i;
    	for (int k = 1; k <= n; k <<= 1){
    		int p = 0;
    		for (int i = n - k + 1; i <= n; i++) y[++p] = i;
    		for (int i = 1; i <= n; i++) if (sa[i] - k > 0) y[++p] = sa[i] - k;
    		for (int i = 0; i <= m; i++) bac[i] = 0;
    		for (int i = 1; i <= n; i++) bac[x[y[i]]]++;
    		for (int i = 1; i <= m; i++) bac[i] += bac[i - 1];
    		for (int i = n; i; i--) sa[bac[x[y[i]]]--] = y[i];
    		swap(x,y);
    		p = x[sa[1]] = 1;
    		for (int i = 2; i <= n; i++)
    			x[sa[i]] = (y[sa[i]] == y[sa[i - 1]] && y[sa[i] + k] == y[sa[i - 1] + k] ? p : ++p);
    		if (p >= n) break;
    		m = p;
    	}
    	for (int i = 1; i <= n; i++) rank[sa[i]] = i;
    	for (int i = 1,k = 0; i <= n; i++){
    		if (k) k--;
    		int j = sa[rank[i] - 1];
    		while (s[i + k] == s[j + k]) k++;
    		height[rank[i]] = k;
    	}
    }
    int sum[maxm],ls[maxm],rs[maxm],rt[maxn],cnt;
    void add(int& u,int pre,int l,int r,int pos){
    	sum[u = ++cnt] = sum[pre] + 1;
    	ls[u] = ls[pre]; rs[u] = rs[pre];
    	if (l == r) return;
    	int mid = l + r >> 1;
    	if (mid >= pos) add(ls[u],ls[pre],l,mid,pos);
    	else add(rs[u],rs[pre],mid + 1,r,pos);
    }
    int query(int u,int v,int l,int r,int L,int R){
    	if (l >= L && r <= R) return sum[u] - sum[v];
    	int mid = l + r >> 1;
    	if (mid >= R) return query(ls[u],ls[v],l,mid,L,R);
    	if (mid < L) return query(rs[u],rs[v],mid + 1,r,L,R);
    	return query(ls[u],ls[v],l,mid,L,R) + query(rs[u],rs[v],mid + 1,r,L,R);
    }
    int a,b,c,d;
    int bin[maxn],Log[maxn],mn[maxn][20];
    void build(){
    	for (int i = 1; i <= n; i++) add(rt[i],rt[i - 1],1,n,sa[i]);
    	bin[0] = 1;
    	for (int i = 1; i <= 20; i++) bin[i] = bin[i - 1] << 1;
    	Log[0] = -1;
    	for (int i = 1; i < maxn; i++) Log[i] = Log[i >> 1] + 1;
    	for (int i = 1; i <= n; i++) mn[i][0] = height[i];
    	for (int i = 1; i <= 17; i++)
    		for (int j = 1; j <= n; j++){
    			if (j + bin[i] - 1 > n) break;
    			mn[j][i] = min(mn[j][i - 1],mn[j + bin[i - 1]][i - 1]);
    		}
    }
    int getm(int l,int r){
    	if (l > r) return INF;
    	int t = Log[r - l + 1];
    	return min(mn[l][t],mn[r - bin[t] + 1][t]);
    }
    bool check(int len){
    	if (len == 0) return true;
    	int u = rank[c],tmp,l = u,r = u;
    	for (int i = 17; i >= 0; i--){
    		tmp = l - bin[i];
    		if (tmp > 0 && getm(tmp + 1,u) >= len) l = tmp;
    		tmp = r + bin[i];
    		if (tmp <= n && getm(u + 1,tmp) >= len) r = tmp;
    	}
    	return query(rt[r],rt[l - 1],1,n,a,b - len + 1);
    }
    void solve(){
    	while (q--){
    		a = read(); b = read();
    		c = read(); d = read();
    		int l = 0,r = min(d - c + 1,b - a + 1),mid;
    		while (l < r){
    			mid = l + r + 1 >> 1;
    			if (check(mid)) l = mid;
    			else r = mid - 1;
    		}
    		printf("%d
    ",l);
    	}
    }
    int main(){
    	//freopen("in.in","r",stdin);
    	n = read(); q = read();
    	scanf("%s",s + 1);
    	getSA();
    	build();
    	solve();
    	return 0;
    }
    
    
  • 相关阅读:
    java生成UUID通用唯一识别码 (Universally Unique Identifier)
    使用ToolRunner运行Hadoop程序基本原理分析
    Hadoop入门经典:WordCount
    Hadoop配置文件
    【Nutch2.2.1基础教程之3】Nutch2.2.1配置文件
    8大排序算法图文讲解
    动态字典树_前缀相互查找(HDU_1671)
    DP_基本DP+排序(HDU_1421)
    斯特灵公式
    七种 qsort 排序方法
  • 原文地址:https://www.cnblogs.com/Mychael/p/8804865.html
Copyright © 2020-2023  润新知