• 洛谷P3768 简单的数学题 【莫比乌斯反演 + 杜教筛】


    题目描述##

    [sumlimits_{i=1}^{n} sumlimits_{j=1}^{n} i*j*gcd(i,j) pmod{p} ]

    (n<=10^{10}),(p)是质数

    题解##

    推导很长就省略啦,,
    有空补回来

    最后推得这个式子:

    [sumlimits_{T = 1}^{n} (frac{lfloor frac{n}{T} floor * (lfloor frac{n}{T} floor + 1)}{2})^2 * T^2 * varphi(T) ]

    前边分块,后边杜教筛
    杜教筛的(g(n))(g(n) = n^2)

    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<map>
    #include<cstring>
    #include<algorithm>
    #define LL long long int
    #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
    #define REP(i,n) for (int i = 1; i <= (n); i++)
    #define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
    using namespace std;
    const int maxn = 5000005,maxm = 100005,INF = 1000000000;
    typedef map<LL,LL> Map;
    Map _f;
    LL P,N,v6,v2;
    LL p[maxn],pi,phi[maxn],f[maxn];
    int isn[maxn];
    LL qpow(LL a,LL b){
    	LL ans = 1;
    	for (; b; b >>= 1,a = a * a % P)
    		if (b & 1) ans = ans * a % P;
    	return ans;
    }
    void init(LL n){
    	v6 = qpow(6,P - 2);
    	v2 = qpow(2,P - 2);
    	N = (LL)pow(n,2.0 / 3.0);
    	phi[1] = 1;
    	for (LL i = 2; i < N; i++){
    		if (!isn[i]) p[++pi] = i,phi[i] = (i - 1) % P;
    		for (LL j = 1; j <= pi && i * p[j] < N; j++){
    			isn[i * p[j]] = true;
    			if (i % p[j] == 0){
    				phi[i * p[j]] = phi[i] * p[j] % P;
    				break;
    			}
    			phi[i * p[j]] = phi[i] * (p[j] - 1) % P;
    		}
    	}
    	for (LL i = 1; i < N; i++) f[i] = (f[i - 1] + i * i % P * phi[i] % P) % P;
    }
    LL sum(LL n){
    	n %= P;
    	LL tmp = n * (n + 1) % P * v2 % P;
    	return tmp * tmp % P;
    }
    LL sum2(LL n){
    	n %= P;
    	return n * (n + 1) % P * (2 * n % P + 1) % P * v6 % P;
    }
    LL S(LL n){
    	if (n < N) return f[n];
    	Map::iterator it;
    	if ((it = _f.find(n)) != _f.end())
    		return it->second;
    	LL ans = n % P * ((n + 1) % P) % P * v2 % P;
    	ans = ans * ans % P;
    	for (LL i = 2,nxt; i <= n; i = nxt + 1){
    		nxt = n / (n / i);
    		ans = (ans - (sum2(nxt) - sum2(i - 1)) % P * S(n / i) % P) % P;
    	}
    	ans = (ans + P) % P;
    	return _f[n] = ans;
    }
    int main(){
    	LL n,ans = 0;
    	cin >> P >> n;
    	init(n);
    	for (LL i = 1,nxt; i <= n; i = nxt + 1){
    		nxt = n / (n / i);
    		ans = (ans + sum(n / i) * ((S(nxt) - S(i - 1)) % P) % P) % P;
    	}
    	ans = (ans + P) % P;
    	cout << ans << endl;
    	return 0;
    }
    
    
  • 相关阅读:
    Firefox扩展IE Tab Plus内置功能导致浏览所有网页加载superfish.com脚本
    iconv编码转换
    Firefox扩展IE Tab Plus内置功能导致浏览所有网页加载superfish.com脚本
    mysql导入邮件
    Rails gem 打包css javascript 提升网站性能 jammit 简介
    装箱/拆箱测试一例(转)
    nifity scaffold gem
    软硬链接
    软硬链接
    git服务搭建
  • 原文地址:https://www.cnblogs.com/Mychael/p/8745237.html
Copyright © 2020-2023  润新知