题目描述
婷婷是个喜欢矩阵的小朋友,有一天她想用电脑生成一个巨大的n行m列的矩阵(你不用担心她如何存储)。她生成的这个矩阵满足一个神奇的性质:若用F[i][j]来表示矩阵中第i行第j列的元素,则F[i][j]满足下面的递推式:
F[1][1]=1
F[i,j]=a*F[i][j-1]+b (j!=1)
F[i,1]=c*F[i-1][m]+d (i!=1)
递推式中a,b,c,d都是给定的常数。
现在婷婷想知道F[n][m]的值是多少,请你帮助她。由于最终结果可能很大,你只需要输出F[n][m]除以1,000,000,007的余数。
输入输出格式
输入格式:
输入文件matrix.in包含一行有六个整数n,m,a,b,c,d。意义如题所述。
输出格式:
输出文件matrix.out包含一个整数,表示F[n][m]除以1,000,000,007的余数。
输入输出样例
输入样例#1:
3 4 1 3 2 6
输出样例#1:
85
说明
【样例1说明】
样例中的矩阵为:
1 4 7 10
26 29 32 35
76 79 82 85
数据范围
题解
我们从f[n][m]往前推导,最终可以推出:
令
x = a^(m - 1) * c
y = a^(m - 1) * d
p = b * (a^(m - 1) - 1) / (a - 1)
q = (x^(n - 1) - 1) / (x - 1)
则结果为
ans = x^(n - 1) * (a^(m - 1) + p) + (y + p) * q;
由于指数非常大,我们运用费马小定理a^(p - 1) ≡ 1 (mod p)
a^(m - 1) ≡ a^((m - 1) mod (p - 1)) (mod p)
还有p,q的实质与等比数列有关,若公比为1,要特判一下
然后就A了~~
通过这题加深了对费马小定理的理解
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 2000000000;
const LL P = 1000000007;
void getread(LL& out,LL& out2){
char c = getchar();
out = out2 = 0;
LL mod = P - 1;
while (c < 48 || c > 57) c = getchar();
while (c >= 48 && c <= 57){
out = out * 10 + c - '0';
out2 = out2 * 10 + c - '0';
out %= mod;
out2 %= P;
c = getchar();
}
out = (out - 1 + mod) % mod;
out2 = (out2 - 1 + P) % P;
}
inline LL qpow(LL a,LL b){
int ans = 1;
for (; b; b >>= 1,a = a * a %P)
if (b & 1)
ans = ans * a % P;
return ans;
}
int main(){
LL n_1,m_1,n,m,a,b,c,d,p,q,x,y;
getread(n_1,n);
getread(m_1,m);
cin>>a>>b>>c>>d;
LL am_1 = qpow(a,m_1);
if (a == 1) p = b * m % P;
else p = b * (am_1 - 1) % P * qpow(a - 1,P - 2) % P;
x = am_1 * c % P;
y = am_1 * d % P;
if (x == 1) q = n;
else q = (qpow(x,n_1) - 1 + P) % P * qpow(x - 1,P - 2) % P;
LL ans = ((qpow(x,n_1) * ((am_1 + p) % P) % P + (y + p) % P * q % P) % P + P) % P;
cout<<ans<<endl;
return 0;
}