• POJ P1185 炮兵阵地 【状压dp】


    炮兵阵地
    Time Limit: 2000MS Memory Limit: 65536K
    Total Submissions: 29502 Accepted: 11424

    Description

    司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队。一个N*M的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示),也可能是平原(用"P"表示),如下图。在每一格平原地形上最多可以布置一支炮兵部队(山地上不能够部署炮兵部队);一支炮兵部队在地图上的攻击范围如图中黑色区域所示:

    如果在地图中的灰色所标识的平原上部署一支炮兵部队,则图中的黑色的网格表示它能够攻击到的区域:沿横向左右各两格,沿纵向上下各两格。图上其它白色网格均攻击不到。从图上可见炮兵的攻击范围不受地形的影响。
    现在,将军们规划如何部署炮兵部队,在防止误伤的前提下(保证任何两支炮兵部队之间不能互相攻击,即任何一支炮兵部队都不在其他支炮兵部队的攻击范围内),在整个地图区域内最多能够摆放多少我军的炮兵部队。

    Input

    第一行包含两个由空格分割开的正整数,分别表示N和M;
    接下来的N行,每一行含有连续的M个字符('P'或者'H'),中间没有空格。按顺序表示地图中每一行的数据。N <= 100;M <= 10。

    Output

    仅一行,包含一个整数K,表示最多能摆放的炮兵部队的数量。

    Sample Input

    5 4
    PHPP
    PPHH
    PPPP
    PHPP
    PHHP

    Sample Output

    6

    Source

    [Submit]   [Go Back]   [Status]   [Discuss]



    状压dp

    题目中炮兵的摆放与前两行有关,很容易想到开一个三维的数组:
    f[i][j][k] 表示第i行,状态为j且第i - 1状态为k的最大炮兵数
    状态转移就很明显了:
    f[I][j][k] = max(f[I][j][k],f[I - 1][k][s] + num[I][j]);   【s表示第I - 2行的状态,num[I][j]表示的是第I行j状态下1炮兵的个数】

    可能你要问了,每一维2^10,这么大的数组装得下么?
    我们可以发现很多状态是冗余的,题目有个山地能放兵且同行相距2格以上,也就是说每一行的状态数实际上并不多
    我们就可以预处理出每一行的状态,然后这里的j,k,s就表示该行的第j,k,s个状态了

    四层循环可以过了

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #define lbt(x) (x & -x)
    #define max(a,b) ((a) > (b) ? (a) : (b))
    #define LL long long int
    #define REP(i,n) for (int i = 1; i <= (n); i++)
    #define fo(i,x,y) for (int i = (x); i <= (y); i++)
    #define Redge(u) for (int k = head[u]; k != -1; k = edge[k].next)
    using namespace std;
    const int maxn = 105,maxm = 70,INF = 1000000000;
    
    int n,m,f[maxn][maxm][maxm],S[maxn][maxm],num[maxn][maxm];
    
    int main()
    {
    	int p,maxv,cnt;
    	cin>>n>>m;
    	maxv = (1 << m) - 1;
    	REP(i,n){
    		char c = getchar();
    		while (c != 'P' && c != 'H') c = getchar();
    		while (c == 'P' || c == 'H'){
    			p = (p << 1) + (c == 'P');
    			c = getchar();
    		}
    		for (int s = 0; s <= maxv; s++){
    			if ((s | p) != p) continue;
    			bool flag = true;
    			int t = s,tot = 0; cnt = INF;
    			while (t){
    				cnt++;
    				if ((t & 1) && cnt <= 2) {flag = false; break;}
    				else if (t & 1) cnt = 0,tot++;
    				t >>= 1;
    			}
    			if (flag) S[i][++S[i][0]] = s,num[i][S[i][0]] = tot;
    		}
    	}
    	//REP(i,n) cout<<S[i][0]<<endl;
    	S[0][0] = 1;
    	for (int i = 1; i <= S[1][0]; i++){
    		f[1][i][1] = num[1][i];
    	}
    	for (int i = 2; i <= n; i++){
    		for (int j = 1; j <= S[i][0]; j++){
    			for (int k = 1; k <= S[i - 1][0]; k++){
    				if (S[i][j] & S[i - 1][k]) continue;
    				for (int l = 1; l <= S[i - 2][0]; l++){
    					if ((S[i - 1][k] & S[i - 2][l]) || (S[i][j] & S[i - 2][l])) continue;
    					f[i][j][k] = max(f[i][j][k],f[i - 1][k][l] + num[i][j]);
    				}
    			}
    		}
    	}
    	int ans = 0;
    	for (int i = 1; i <= S[n][0]; i++)
    		for (int j = 1; j <= S[n - 1][0]; j++)
    			ans = max(ans,f[n][i][j]);
    	cout<<ans<<endl;
    	return 0;
    }
    

  • 相关阅读:
    Docker篇章1:Docker介绍
    flask-restful结合vue自定义错误类型
    9.Go语言-函数
    8.Go语言-流程控制
    7.Go语言-结构体
    6.Go语言-指针
    5.Go语言-map类型
    计算机组成原理笔记2-数制、字符、校验码、定点数、浮点数、算术逻辑单元
    计算机组成原理笔记1--基础概念丶性能指标
    计算机网络笔记2--物理层
  • 原文地址:https://www.cnblogs.com/Mychael/p/8282844.html
Copyright © 2020-2023  润新知