• BZOJ1982 [Spoj 2021]Moving Pebbles 【博弈论】


    题目

    1. Moving Pebbles Two players play the following game. At the beginning of the game they start with n (1<=n<=100000) piles of stones. At each step of the game, the player chooses a pile and remove at least one stone from this pile and move zero or more stones from this pile to any other pile that still has stones. A player loses if he has no more possible moves. Given the initial piles, determine who wins: the first player, or the second player, if both play perfectly. 给你N堆Stone,两个人玩游戏. 每次任选一堆,首先拿掉至少一个石头,然后移动任意个石子到任意堆中. 谁不能移动了,谁就输了…

    输入格式

    Each line of input has integers 0 < n <= 100000, followed by n positive integers denoting the initial piles.

    输出格式

    For each line of input, output “first player” if first player can force a win, or “second player”, if the second player can force a win.

    输入样例

    3 2 1 3

    输出样例

    first player

    题解

    博弈论的题目总是很神(shao)奇(nao)。。。。
    但想清楚总是很简单
    ①根据博弈的套路,当石子堆两两配对,后手猥琐模仿先手,先手必败
    ②根据本题特点,石子可以拿取后自由移动;
    1、若为奇数,一定不是两两配对,那么先手就可以取掉一点并移动使得堆数-1且两两配对
    2、若为偶数,且不两两配对,那么先手可以通过一定操作使得两两配对

    综上:只要一开始不是两两配对,先手必胜,否则必败

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #define LL long long int
    #define REP(i,n) for (int i = 1; i <= (n); i++)
    #define Redge(u) for (int k = h[u]; k != -1; k = ed[k].nxt)
    using namespace std;
    const int maxn = 100005,maxm = 100005,INF = 1000000000;
    inline int RD(){
        int out = 0,flag = 1; char c = getchar();
        while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
        while (c >= 48 && c <= 57) {out = (out << 1) + (out << 3) + c - '0'; c = getchar();}
        return out * flag;
    }
    int A[maxn],n;
    int main(){
        n = RD();
        if (n & 1) {puts("first player"); return 0;}
        REP(i,n){
            A[i] = RD();
            if (i % 2 == 0 && A[i] != A[i - 1]) {puts("first player"); return 0;}
        }
        puts("second player");
        return 0;
    }
    
  • 相关阅读:
    谷歌控制台的使用
    等比例居中
    display:block、inline、inline-block的区别及应用案例
    省市县三级联动逻辑
    页面滑动至某处,固定导航。
    类加载器在Tomcat中的应用
    MySQL中一些关于索引的知识点
    Spring中AOP相关源码解析
    Spring中Bean的实例化与DI的过程
    我该如何学习spring源码以及解析bean定义的注册
  • 原文地址:https://www.cnblogs.com/Mychael/p/8282741.html
Copyright © 2020-2023  润新知