• BZOJ2716 [Violet 3]天使玩偶 【CDQ分治】


    题目

    这里写图片描述

    输入格式

    这里写图片描述

    输出格式

    这里写图片描述

    输入样例

    //样例太长就不贴了。。。。

    输出样例

    //见原题

    提示

    这里写图片描述

    题解

    我们将曼哈顿距离式子中的绝对值去掉,每次只考虑x,y比当前点小的更新答案。
    为了使所有点都对答案进行更新,将坐标轴旋转三次再算三次

    每一次对于点(x,y),找到(x’,y’)【x’<=x,y’<= y且 时间t’ < t】使得x+y(x+y)最小
    类似三维偏序的东西,可以用CDQ分治
    树状数组维护最大值

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #define LL long long int
    #define REP(i,n) for (int i = 1; i <= (n); i++)
    #define lbt(x) (x & -x)
    using namespace std;
    const int maxn = 1000005,maxm = 2010005,INF = 0x7fffffff;
    inline int RD(){
        int out = 0,flag = 1; char c = getchar();
        while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
        while (c >= 48 && c <= 57) {out = (out << 1) + (out << 3) + c - '0'; c = getchar();}
        return out * flag;
    }
    int ans[maxn],n,m,N = 0,ansi = 0,Qi = 0,S[maxm];
    struct Que{int x,y,t,id;}Q[maxn],T[maxn];
    inline bool operator <(const Que& a,const Que& b){
        if (a.x == b.x && a.y == b.y) return a.t < b.t;
        if (a.x == b.x) return a.y < b.y;
        return a.x < b.x;
    }
    void add(int u,int v){while (u <= N) S[u] = max(S[u],v),u += lbt(u);}
    int query(int u){int an = 0; while (u) an = max(an,S[u]),u -= lbt(u); return an;}
    void cls(int u){while (u <= N) S[u] = 0,u += lbt(u);}
    void CDQ(int l,int r){
        if (l == r) return;
        int mid = l + r >> 1,l1 = l,l2 = mid + 1,temp;
        for (int i = l; i <= r; i++){
            if (Q[i].t <= mid && !Q[i].id)
                add(Q[i].y,Q[i].x + Q[i].y);
            else if (Q[i].t > mid && Q[i].id){
                temp = query(Q[i].y);
                if (temp) ans[Q[i].id] = min(ans[Q[i].id],Q[i].x + Q[i].y - temp);
            }
        }
        for (int i = l; i <= r; i++){
            if (Q[i].t <= mid){
                T[l1++] = Q[i];
                if (!Q[i].id) cls(Q[i].y);
            }else T[l2++] = Q[i];
        }
        for (int i = l; i <= r; i++) Q[i] = T[i];
        CDQ(l,mid); CDQ(mid + 1,r);
    }
    int main(){
        //freopen("in.txt","r",stdin);
        //freopen("out1.txt","w",stdout);
        n = RD();m = RD(); Qi = n + m; int opt;
        REP(i,n){
            Q[i].x = RD() + 1,Q[i].y = RD() + 1,Q[i].t = i,Q[i].id = 0;
            N = max(N,Q[i].x); N = max(N,Q[i].y);
        }
        for (int i = n + 1; i <= Qi; i++){
            opt = RD(); Q[i].x = RD() + 1; Q[i].y = RD() + 1,Q[i].t = i;
            N = max(N,Q[i].x); N = max(N,Q[i].y);
            if (opt & 1) Q[i].id = 0;
            else Q[i].id = ++ansi;
        }N++;
        fill(ans,ans + maxn,INF);
        sort(Q + 1,Q + 1 + Qi); CDQ(1,Qi);
        REP(i,Qi) Q[i].x = N - Q[i].x;
        sort(Q + 1,Q + 1 + Qi); CDQ(1,Qi);
        REP(i,Qi) Q[i].y = N - Q[i].y;
        sort(Q + 1,Q + 1 + Qi); CDQ(1,Qi);
        REP(i,Qi) Q[i].x = N - Q[i].x;
        sort(Q + 1,Q + 1 + Qi); CDQ(1,Qi);
        REP(i,ansi) printf("%d
    ",ans[i]);
        return 0;
    }
    
  • 相关阅读:
    day04用户交互和运算符
    day04垃圾回收机制
    day4
    B2. K for the Price of One (Hard Version)
    C. New Year and Permutation
    Rational Ratio
    C. Two Arrays
    D. MEX maximizing
    B. Infinite Prefixes
    C. Obtain The String
  • 原文地址:https://www.cnblogs.com/Mychael/p/8282711.html
Copyright © 2020-2023  润新知