• codeforces100633J Ceizenpok’s formula 【扩展Lucas】


    题目链接

    Ceizenpok’s formula

    题解

    (C_n^k pmod m)
    扩展(Lucas)板题

    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<cstring>
    #include<algorithm>
    #define LL long long int
    #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
    #define REP(i,n) for (int i = 1; i <= (n); i++)
    #define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
    #define res register
    using namespace std;
    const int maxn = 1000005,maxm = 100005,INF = 1000000000;
    inline LL read(){
    	LL out = 0,flag = 1; char c = getchar();
    	while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
    	while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
    	return out * flag;
    }
    LL md;
    LL pi[50],pk[50],cnt,fac[maxn];
    void pre(LL pi,LL pk){
    	fac[0] = 1;
    	for (LL i = 1; i <= pk; i++)
    		if (i % pi) fac[i] = 1ll * fac[i - 1] * i % pk;
    		else fac[i] = fac[i - 1];
    }
    void init(){
    	LL x = md;
    	for (res LL i = 2; i * i <= x; i++)
    		if (x % i == 0){
    			++cnt; pi[cnt] = i; pk[cnt] = 1;
    			while (x % i == 0) pk[cnt] *= i,x /= i;
    		}
    	if (x - 1) ++cnt,pi[cnt] = pk[cnt] = x;
    }
    inline LL qpow(LL a,LL b,LL md){
    	LL ans = 1;
    	for (; b; b >>= 1,a = 1ll * a * a % md)
    		if (b & 1) ans = 1ll * ans * a % md;
    	return ans % md;
    }
    void exgcd(LL a,LL b,LL& d,LL& x,LL &y){
    	if (!b) {x = 1; y = 0; d = a;}
    	else exgcd(b,a % b,d,y,x),y -= a / b * x;
    }
    inline LL inv(LL a,LL P){
    	if (!a) return 0;
    	LL d,x,y; exgcd(a,P,d,x,y);
    	x = (x % P + P) % P; if (!x) x += P;
    	return x;
    }
    inline LL Fac(LL n,LL pi,LL pk){
    	if (!n) return 1;
    	int ans = qpow(fac[pk],n / pk,pk);
    	return 1ll * ans * fac[n % pk] % pk * Fac(n / pi,pi,pk) % pk;
    }
    inline LL C(LL n,LL m,int pi,int pk){
    	if (m > n) return 0;
    	int a = Fac(n,pi,pk),b = Fac(m,pi,pk),c = Fac(n - m,pi,pk),ans,k = 0;
    	for (res LL i = n; i; i /= pi) k  += i / pi;
    	for (res LL i = m; i; i /= pi) k  -= i / pi;
    	for (res LL i = n - m; i; i /= pi) k  -= i / pi;
    	ans = 1ll * a * inv(b,pk) % pk * inv(c,pk) % pk * qpow(pi,k,pk) % pk;
    	return 1ll * ans * (md / pk) % md * inv(md / pk,pk) % md;
    }
    inline int exlucas(LL n,LL m){
    	if (m > n) return 0;
    	LL ans = 0;
    	for (res LL i = 1; i <= cnt; i++)
    		pre(pi[i],pk[i]),ans = (ans + C(n,m,pi[i],pk[i])) % md;
    	return ans;
    }
    int main(){
    	LL n = read(),k = read(); md = read();
    	init();
    	cout << exlucas(n,k) << endl;;
    	return 0;
    }
    
  • 相关阅读:
    20110603 本日跌的股票之后一段时间轻易不要碰
    一日三省
    火电排污新标准年内出台 撬动千亿脱硝市场
    20082011大股东增持专题
    收评:5月24日资金流向(摘自益盟)
    2011年中期业绩预增前20家公司
    2011大股东十大增持概念股全景图
    放不下期货
    从众是通向地狱最廉价的门票
    在ASP.NET中获取Get方式和Post方式提交的数据
  • 原文地址:https://www.cnblogs.com/Mychael/p/12936424.html
Copyright © 2020-2023  润新知