• 线程池中线程数量的确定


    一、抛出问题

      关于如何计算并发线程数,一般分两派,来自两本书,且都是好书,到底哪个是对的?问题追踪后,整理如下:

    1.1 派系1

      第一派:《Java Concurrency in Practice》即《java并发编程实践》,如下图:

      如上图,在《Java Concurrency in Practice》一书中,给出了估算线程池大小的公式:

      Nthreads=Ncpu*Ucpu*(1+w/c),其中

      Ncpu=CPU核心数

      Ucpu=cpu使用率,0~1

      W/C=等待时间与计算时间的比率

    1.2 派系2

      第二派:《Programming Concurrency on the JVM Mastering》即《Java 虚拟机并发编程》

      线程数=Ncpu/(1-阻塞系数)

    二、分析

      对于派系一,假设cpu100%运转,即撇开CPU使用率这个因素,线程数=Ncpu*(1+w/c)。

      现在假设将派系二的公式等于派系一公式,即Ncpu/(1-阻塞系数)=Ncpu*(1+w/c),===》阻塞系数=w/(w+c),即阻塞系数=阻塞时间/(阻塞时间+计算时间),这个结论在派系二后续中得到应征,如下图:

      由此可见,派系一和派系二其实是一个公式......这样我就放心了......

    三、实际应用

      那么实际使用中并发线程数如何设置呢?分析如下(我们以派系一公式为例):

      Nthreads=Ncpu*(1+w/c)

      IO密集型:一般情况下,如果存在IO,那么肯定w/c>1(阻塞耗时一般都是计算耗时的很多倍),但是需要考虑系统内存有限(每开启一个线程都需要内存空间),这里需要上服务器测试具体多少个线程数适合(CPU占比、线程数、总耗时、内存消耗)。如果不想去测试,保守点取1即,Nthreads=Ncpu*(1+1)=2Ncpu。这样设置一般都OK。

      计算密集型:假设没有等待w=0,则W/C=0. Nthreads=Ncpu。

      至此结论就是:

      IO密集型=2Ncpu(可以测试后自己控制大小,2Ncpu一般没问题)(常出现于线程中:数据库数据交互、文件上传下载、网络数据传输等等)

      计算密集型=Ncpu(常出现于线程中:复杂算法)

      java中:Ncpu=Runtime.getRuntime().availableProcessors()

    =========================此处可略过=============================================

      当然派系一种《Java Concurrency in Practice》还有一种说法。

      即对于计算密集型的任务,在拥有N个处理器的系统上,当线程池的大小为N+1时,通常能实现最优的效率。(即使当计算密集型的线程偶尔由于缺失故障或者其他原因而暂停时,这个额外的线程也能确保CPU的时钟周期不会被浪费。)

      即,计算密集型=Ncpu+1,但是这种做法导致的多一个cpu上下文切换是否值得,这里不考虑。读者可自己考量。

    ======================================================================

    四、总结

      选择线程池并发线程数的因素很多:任务类型、内存等线程中使用到所有资源都需要考虑。本文经过对现有文献的分析论证,得出结论,并给出了实际应用公式,实乃工程师之福利,技术之典范......

    五、参考文章

    https://www.cnblogs.com/dennyzhangdd/p/6909771.htm

    本文来自博客园,作者:Mr-xxx,转载请注明原文链接:https://www.cnblogs.com/MrLiuZF/p/15188349.html

  • 相关阅读:
    制造者为什么重要
    归因理论
    初创业谨记有三法宝:顶梁柱、现金牛、北极星
    华特迪士尼语录
    说好一个创业故事的5个步骤
    接口
    抽象类_模板方法设计模式
    抽象类与抽象方法
    非static和static初始化块
    单例设计模式
  • 原文地址:https://www.cnblogs.com/MrLiuZF/p/15188349.html
Copyright © 2020-2023  润新知