- 题目描述:
-
给定n,a求最大的k,使n!可以被a^k整除但不能被a^(k+1)整除。
- 输入:
-
两个整数n(2<=n<=1000),a(2<=a<=1000)
- 输出:
-
一个整数.
- 样例输入:
-
6 10
- 样例输出:
-
1
这个题首先如果数字小的话是可以考虑轮流试的,但是1000的数字范围无论是对阶乘还是幂都太大了。于是我们想一下,既然要求整除,说明每个素因子都是可以抵消的,这样我们就可以求解了。但是还要考虑到,因为后面是求哪个k,所以说我们不是对n!和a的幂分别求出对应的素数因子数组。我采取的方法是这样的:
1、分解得到n!的素数数组。
2、求出a的素数数组
3、求两者的商去最小值
1 #include<iostream> 2 #include<cstdio> 3 #include<cmath> 4 using namespace std; 5 int su[168] = {2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997}; 6 int main() 7 { 8 int n,a; 9 while(cin>>n>>a){ 10 int an[168]; 11 for(int i=0;i<168;i++){ 12 an[i]=0; 13 } 14 //fenjie n! 15 for(int i=n;i>=0;i--){ 16 int index=0; 17 int tmp=i; 18 while(tmp>=2){ 19 if(tmp%su[index]==0){ 20 tmp/=su[index]; 21 an[index]++; 22 } 23 else{ 24 index++; 25 } 26 } 27 } 28 int bn[168]; 29 for(int i=0;i<168;i++){ 30 bn[i]=0; 31 } 32 //fenjie a 33 int t=a; 34 int index=0; 35 while(t>=2){ 36 if(t%su[index]==0){ 37 t/=su[index]; 38 bn[index]++; 39 } 40 else{ 41 index++; 42 } 43 } 44 double minn=100000; 45 for(int i=0;i<168;i++){ 46 if(bn[i]!=0){ 47 double f=an[i]/bn[i]; 48 if(f<minn){ 49 minn=f; 50 } 51 } 52 } 53 cout<<int(minn+0.5)<<endl; 54 } 55 return 0; 56 }