• 洛谷 [P2480] 古代猪文


    卢卡斯定理

    注意特判底数和模数相等的情况
    http://www.cnblogs.com/poorpool/p/8532809.html

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #define ll long long
    using namespace std;
    const int MOD = 999911659;
    ll n, g, p[5] = {0, 2, 3, 4679, 35617}, ans[5], fac[100000], ni[100000];
    ll exgcd(ll a, ll b, ll & x, ll & y ){
    	if(!b) {
    		x = 1; y = 0;
    		return a;
    	}
    	ll t = exgcd(b, a % b, y, x);
    	y -= a / b * x;
    	return t;
    }
    ll getni(ll x, ll p) {
    	ll a, b;
    	exgcd(x, p, a, b);
    	(a += p) %= p;
    	return a;
    } 
    ll lucas(ll a, ll b, ll p) {
    	if(a < b) return 0;
    	if(a < p) return fac[a] * ni[b] * ni[a - b] % p;
    	else return lucas(a % p, b % p, p) * lucas(a / p, b / p, p) % p;
    }
    void work(int x) {
    	memset(fac, 0, sizeof(fac));
    	memset(ni, 0, sizeof(ni));
    	fac[1] = fac[0] = ni[0] = ni[1] = 1;
    	for(int i = 2; i < p[x]; i++) fac[i] = fac[i - 1] * i % p[x];
    	for(int i = 2; i < p[x]; i++) ni[i] = (p[x] - p[x] / i) * ni[p[x] % i] % p[x]; 
    	for(int i = 2; i < p[x]; i++) (ni[i] *= ni[i - 1]) %= p[x];
    	ll i = 1ll;
    	for( ; i * i < n; i++) {
    		if(n % i == 0) {
    			ans[x] += lucas(n, i, p[x]);
    			//cout << ans[x] << endl;
    			ans[x] += lucas(n, n / i, p[x]);
    			//cout << ans[x] << endl;
    			ans[x] %= p[x];
    			//cout << ans[x] << endl;
    		}
    	}
    	if(i * i == n) ans[x] += lucas(n, i, p[x]);
    	//cout << ans[x] << endl;
    	//cout << endl;
    	ans[x] %= p[x];
    }
    ll CRT() {
    	ll M = MOD - 1;
    	ll rt = 0ll;
    	for(int i = 1; i <= 4; i++) {
    		rt += ans[i] * getni(M / p[i], p[i]) * (M / p[i]) % M;
    	}
    	//cout << rt << endl;
    	return rt % M;
    }
    ll quick_mod(ll a, ll k) {
    	ll ans = 1ll;
    	while(k) {
    		if(k & 1ll) (ans *= a) %= MOD;
    		(a *= a) %= MOD;
    		k >>= 1;
    	}
    	return ans;
    }
    int main() {
    	cin >> n >> g;	
    	if(g == MOD) {printf("0
    ");return 0;}
    	for(int i = 1; i <= 4; i++) {
    		work(i);
    		//cout << ans[i] << endl;
    	}
    	cout << quick_mod(g, CRT()) << endl;
    	return 0;
    }
    
  • 相关阅读:
    素数回文 ---- 有点暴力.....
    Manacher算法 , 实例 详解 . NYOJ 最长回文
    大数处理 详解 模版
    River Crossing 简单的动态规划 .
    hdu
    产生冠军 map 的 应用 .
    MySQL的数据库备份与恢复。
    rsync的相关使用,参数设置。
    centos与mac安装python虚拟环境 virtualenvwrapper
    CentOS7安装Python3.7
  • 原文地址:https://www.cnblogs.com/Mr-WolframsMgcBox/p/8637077.html
Copyright © 2020-2023  润新知