二分图最大点权独立集
通过题目描述我们可以很明显的看出要通过二分图建模,二分图求最大独立点集很容易,就是建立二分图求n-最小割,然而这里加入了权值,而且权值是在点上的,那么我们对于每个点连一条到源点或汇点的容量等于权值的边,求最小割即可,见胡伯涛论文
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <queue>
using namespace std;
const int MAXN=25000,MAXM=500005;
int s,t,head[MAXN],cur[MAXN],n,m,maxflow,tot,nume,dep[MAXN],ma[105][105],dx[4]={-1,1,0,0},dy[4]={0,0,1,-1};
queue<int >q;
struct edge{
int to,nxt,flow,cap;
}e[MAXM];
void adde(int from,int to,int cap){
e[++nume].to=to;
e[nume].cap=cap;
e[nume].nxt=head[from];
head[from]=nume;
}
bool bfs(){
memset(dep,0,sizeof(dep));
q.push(s);dep[s]=1;
while(!q.empty()){
int u=q.front();q.pop();
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(!dep[v]&&e[i].flow<e[i].cap){
dep[v]=dep[u]+1;
q.push(v);
}
}
}
return dep[t];
}
int dfs(int u,int flow){
if(u==t) return flow;
int tot=0;
for(int i=head[u];i&&tot<flow;i=e[i].nxt){
int v=e[i].to;
if(dep[v]==dep[u]+1&&e[i].flow<e[i].cap){
if(int t=dfs(v,min(flow-tot,e[i].cap-e[i].flow))){
e[i].flow+=t;
e[((i-1)^1)+1].flow-=t;
tot+=t;
}
}
}
return tot;
}
void dinic(){
while(bfs()){
for(int i=s;i<=t;i++) cur[i]=head[i];
maxflow+=dfs(s,0x3f3f3f3f);
//cout<<1<<endl;
}
}
int main(){
cin>>m>>n;
s=0;t=m*n+1;
for(int i=1;i<=m;i++){
for(int j=1;j<=n;j++){
scanf("%d",&ma[i][j]);
}
}
for(int i=1;i<=m;i++){
for(int j=1;j<=n;j++){
if((i+j)&1){
for(int k=0;k<4;k++){
int x=i+dx[k],y=j+dy[k];
if(ma[x][y]){
// cout<<i*n+j-n<<' '<<x*n+y-n<<endl;
adde(i*n+j-n,x*n+y-n,0x3f3f3f3f);
adde(x*n+y-n,i*n+j-n,0);
}
}
adde(s,i*n+j-n,ma[i][j]);adde(i*n+j-n,s,0);
}else adde(i*n+j-n,t,ma[i][j]),adde(t,i*n+j-n,0);
tot+=ma[i][j];
}
}
//for(int i=head[1];i;i=e[i].nxt) cout<<e[i].to<<endl;
dinic();
cout<<tot-maxflow<<endl;
return 0;
}