• 机器学习笔记关于python实现Kmean算法


    这次是一个关于Kmean的类聚算法,

    简单来说就是到中心点的距离的加权和

    看起来很厉害

    写出来一点不厉害

    一、随机取点

    import numpy as np
    import cv2
    from matplotlib import pyplot as plt
    
    X = np.random.randint(25,50,(25,2))
    Y = np.random.randint(60,85,(25,2))
    Z = np.vstack((X,Y))
    
    # convert to np.float32
    Z = np.float32(Z)
    plt.hist(Z,100,[0,100]),plt.show()

    二、kmean部分

    调用cv2库里的kmean

    对A、B两类进行标记

    # define criteria and apply kmeans()
    criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
    ret,label,center=cv2.kmeans(Z,2,None,criteria,10,cv2.KMEANS_RANDOM_CENTERS)
    
    # Now separate the data, Note the flatten()
    A = Z[label.ravel()==0]
    B = Z[label.ravel()==1]

    三、类聚结果

    画图画图画图

    # Plot the data
    plt.scatter(A[:,0],A[:,1])
    plt.scatter(B[:,0],B[:,1],c = 'r')
    plt.scatter(center[:,0],center[:,1],s = 80,c = 'y', marker = 's')
    plt.xlabel('Height'),plt.ylabel('Weight')
    plt.show()

    ------------------------------------------------------------------------------------------------------------------------------------------------------

    最后

    代码汇总

    import numpy as np
    import cv2
    from matplotlib import pyplot as plt
    
    X = np.random.randint(25,50,(25,2))
    Y = np.random.randint(60,85,(25,2))
    Z = np.vstack((X,Y))
    
    # convert to np.float32
    Z = np.float32(Z)
    plt.hist(Z,100,[0,100]),plt.show()
    # define criteria and apply kmeans()
    criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
    ret,label,center=cv2.kmeans(Z,2,None,criteria,10,cv2.KMEANS_RANDOM_CENTERS)
    
    # Now separate the data, Note the flatten()
    A = Z[label.ravel()==0]
    B = Z[label.ravel()==1]
    
    # Plot the data
    plt.scatter(A[:,0],A[:,1])
    plt.scatter(B[:,0],B[:,1],c = 'r')
    plt.scatter(center[:,0],center[:,1],s = 80,c = 'y', marker = 's')
    plt.xlabel('Height'),plt.ylabel('Weight')
    plt.show()
    

      

  • 相关阅读:
    java实现第六届蓝桥杯牌型整数
    java实现第六届蓝桥杯牌型整数
    java实现第六届蓝桥杯牌型整数
    java实现第六届蓝桥杯牌型整数
    java实现第六届蓝桥杯牌型整数
    java实现第六届蓝桥杯九数组分数
    java实现第六届蓝桥杯九数组分数
    java实现第六届蓝桥杯九数组分数
    java实现第六届蓝桥杯九数组分数
    Spring boot(4)-应用打包部署
  • 原文地址:https://www.cnblogs.com/MnsterLu/p/5553688.html
Copyright © 2020-2023  润新知