• 001-贝叶斯算法简介


    贝叶斯简介:

    贝叶斯(约1701-1761) Thomas Bayes,英国数学家

    贝叶斯方法源于他生前为解决一个“逆概”问题写的一篇文章

    生不逢时,死后它的作品才被世人认可

    贝叶斯要解决的问题:

    正向概率:假设袋子里面有N个白球,M个黑球,你伸手进去摸一把,摸出黑球的概率是多大

    逆向概率:如果我们事先并不知道袋子里面黑白球的比例,而是闭着眼睛摸出一个(或好几个)球,观察这些取出来的球的颜色之后,那么我们可以就此对袋子里面的黑白球的比例作出什么样的推测

     

    Why贝叶斯?

    现实世界本身就是不确定的,人类的观察能力是有局限性的

    我们日常所观察到的只是事物表面上的结果,因此我们需要提供一个猜测

     

    男生:60%
    女生:40%

    男生总是穿长裤,女生则一半穿长裤一半穿裙子
    正向概率:随机选取一个学生,他(她)穿长裤的概率和穿裙子的概率是多大

    逆向概率:迎面走来一个穿长裤的学生,你只看得见他(她)穿的是否长裤,而无法确定他(她)的性别,你能够推断出他(她)是女生的概率是多大吗?

    假设学校里面人的总数是U 个
    穿长裤的(男生):U * P(Boy) * P(Pants|Boy)
    P(Boy) 是男生的概率= 60%
    P(Pants|Boy) 是条件概率,即在Boy 这个条件下穿长裤的概率是多大,这里是100% ,因为所有男生都穿长裤
    穿长裤的(女生):U * P(Girl) * P(Pants|Girl)

    求解:穿长裤的人里面有多少女生

    穿长裤总数:$U(Pants)=U imes  P(Boy) imes P(Pants|Boy) + U imes P(Girl) imes P(Pants|Girl)$

    $P(Girl|Pants) = frac{U imes  P(Girl) imes P(Pants|Girl)}{U(Pants)}$

    $U(Pants)=U imes P(Boy) imes P(Pants|Boy) + U imes P(Girl) imes P(Pants|Girl)$

    $U(Pants)=U imes [(P(Boy) imes P(Pants|Boy) + P(Girl) imes P(Pants|Girl)]$

    $P(Girl|Pants)=frac{U imes  P(Girl) imes P(Pants|Girl)}{U imes [(P(Boy) imes P(Pants|Boy) + P(Girl) imes P(Pants|Girl)]}$

    $P(Girl|Pants)=frac{ P(Girl) imes P(Pants|Girl)}{P(Boy) imes P(Pants|Boy) + P(Girl) imes P(Pants|Girl)}$

    $P(Girl|Pants)=frac{ P(Girl) imes P(Pants|Girl)}{ P(Pants)}$

    贝叶斯公式:

    $P(A|B)=frac{ P(A) imes P(B|A)}{ P(B)}$

  • 相关阅读:
    idea安装破解
    项目中邮件发送
    (转)四种复制文件的效率高低
    备份
    关于时间
    转 累加含小数点的数据:parseFloat、toFixed等
    转 Java将PDF转换成图片
    (转)JAVA实现SFTP实例
    获取浏览器参数
    js 中日期转换
  • 原文地址:https://www.cnblogs.com/Mjerry/p/9744083.html
Copyright © 2020-2023  润新知