• 【luogu P4180 严格次小生成树[BJWC2010]】 模板


    题目链接:https://www.luogu.org/problemnew/show/P4180

    这个题卡树剖。记得开O2。

    这个题inf要到1e18。

    定理:次小生成树和最小生成树差距只有在一条边上

    非严格次小生成树:枚举每一条不在最小生成树上的边,加入到最小生成树中构成一个环。删去这个环上的最大值。(此最大值有可能与加入生成树中的边相等,故为非严格次小生成树。)重复此操作取min,得到次小生成树。(基于kruskal实现。)

    严格次小生成树:与非严格次小生成树类似,不同在于为了避免删去环上的最大值等于加入生成树中的边,需要记录次最大值。恶心点所在。

    于是维护最大值和次小值又成了一道数据结构题。

    树剖:剖MST,查询加进来的边的两端点编号 = =

    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #define ll long long
    #define lson l, mid, rt<<1
    #define rson mid+1, r, rt<<1|1
    using namespace std;
    const int maxn = 300010;
    const ll inf = 1e18;
    inline ll read() 
    {
        char ch = getchar(); ll u = 0, f = 1;
        while (!isdigit(ch)) {if (ch == '-')f = -1; ch = getchar();}
        while (isdigit(ch)) {u = u * 10 + ch - 48; ch = getchar();}return u * f;
    }
    ll n, m, fa[maxn], deep[maxn], size[maxn], son[maxn], top[maxn], seg[maxn], rev[maxn], W[maxn], ans = inf, num;
    ll father[maxn], mstans, mstcnt;
    bool vis[maxn];
    struct EDG{
    	ll u, v, w;
    }G[maxn];//mst
    struct edge{
    	ll to, next, len;
    }e[maxn<<2];
    ll head[maxn], cnt;
    void add(ll u, ll v, ll w)
    {
    	e[++cnt].len = w; e[cnt].next = head[u]; e[cnt].to = v; head[u] = cnt;
    	e[++cnt].len = w; e[cnt].next = head[v]; e[cnt].to = u; head[v] = cnt;
    }
    //kruskal
    bool cmp(EDG a, EDG b)
    {
    	return a.w < b.w;
    }
    ll find(ll x)
    {
    	return father[x] == x ? x : father[x] = find(father[x]);
    }
    void init()
    {
    	for(ll i = 1; i <= n; i++) father[i] = i;
    	sort(G+1, G+1+m, cmp);
    }
    void kruskal()
    {
    	init();
    	for(ll i = 1; i <= m; i++)
    	{
    		if(mstcnt == n-1) break;
    		ll x = find(G[i].u), y = find(G[i].v);
    		if(x != y)
    		{
    			mstans += G[i].w;
    			mstcnt++;
    			vis[i] = 1;
    			add(G[i].u, G[i].v, G[i].w);
    			father[x] = y;
    		}
    	}
    }
    //Segment_Tree
    bool maxcmp(ll a, ll b)
    {
    	return a > b;
    }
    ll get_sec(ll a, ll b, ll c, ll d)
    {
    	ll z[5] = {a, b, c, d};
    	sort(z, z+4, maxcmp);
    	for(ll i = 1; i <= 3; i++)
    	{
    		if(z[i] != z[0]) return z[i];
    	}
    }
    struct Segment_Tree{
    	ll fir, sec;
    }tree[maxn<<2];
    void PushUPfir(ll rt)
    {
    	tree[rt].fir = max(tree[rt<<1].fir, tree[rt<<1|1].fir);
    }
    void PushUPsec(ll rt)
    {
    	tree[rt].sec = get_sec(tree[rt<<1].fir, tree[rt<<1|1].fir, tree[rt<<1].sec, tree[rt<<1|1].sec);
    }
    void build(ll l, ll r, ll rt)
    {
    	if(l == r)
    	{
    		tree[rt].fir = rev[l];
    		return;
    	}
    	ll mid = (l + r) >> 1;
    	build(lson);
    	build(rson);
    	PushUPfir(rt);
    	PushUPsec(rt);
    }
    Segment_Tree query(ll left, ll right, ll l, ll r, ll rt)
    {
    	Segment_Tree max1 = {-inf,-inf}, max2 = {-inf,-inf};
    	if(left <= l && r <= right)
    	{
    		return (Segment_Tree){tree[rt].fir, tree[rt].sec};
    	}
    	ll mid = (l + r) >> 1;
    	if(left <= mid) max1 = query(left, right, lson); 
    	if(right > mid) max2 = query(left, right, rson);
    	return (Segment_Tree) {max(max1.fir, max2.fir), get_sec(max1.fir, max1.sec, max2.fir, max2.sec)}; 
    }
    //Tree_cut
    void dfs1(ll u, ll f, ll d)
    {
    	ll maxson = -1;
    	size[u] = 1;
    	deep[u] = d;
    	fa[u] = f;
    	for(ll i = head[u]; i != -1; i = e[i].next)
    	{
    		ll v = e[i].to;
    		if(f != v)
    		{
    			W[v] = W[u] + e[i].len;
    			dfs1(v, u, d+1);
    			size[u] += size[v];
    			if(maxson < size[v]) maxson = size[v], son[u] = v;
    		}
    	}
    }
    void dfs2(ll u, ll t)
    {
    	seg[u] = ++num;
    	rev[num] = W[u] - W[fa[u]];//前缀和边权上点权 
    	//rev[num] = node[u];
    	top[u] = t;
    	if(!son[u]) return;
    	dfs2(son[u], t);
    	for(ll i = head[u]; i != -1; i = e[i].next)
    	{
    		ll v = e[i].to;
    		if(v == fa[u] || v == son[u]) continue;
    		dfs2(v, v);
    	}
    }
    ll LCA(ll x, ll y, ll d)//当前边的权值 
    {
    	ll res = -inf;
    	while(top[x] != top[y])
    	{
    		if(deep[top[x]] < deep[top[y]]) swap(x, y);
    		Segment_Tree temp1 = query(seg[top[x]], seg[x], 1, n, 1);
    		x = fa[top[x]];
    		res = max(res, (temp1.fir == d) ? temp1.sec : temp1.fir);
    	}
    	if(deep[x] < deep[y]) swap(x, y);
    	Segment_Tree temp2 = query(seg[y] + 1, seg[x], 1, n, 1);
    	return res = max(res, (temp2.fir == d) ? temp2.sec : temp2.fir);
    }
    int main()
    {
    	memset(head, -1, sizeof(head));
    	n = read(); m = read(); //scanf("%lld%lld",&n,&m);
    	for(ll i = 1; i <= m; i++) {G[i].u = read(); G[i].v = read(); G[i].w = read();}//scanf("%lld%lld%lld",&G[i].u,&G[i].v,&G[i].w);
    	kruskal();
    	dfs1(1, 0, 1); dfs2(1, 1);
    	build(1, n, 1);
    	for(ll i = 1; i <= m; i++)
    	{
    		if(vis[i]) continue;
    		ll temp = mstans + G[i].w - LCA(G[i].u, G[i].v, G[i].w);
    		if(ans > temp && temp != mstans + G[i].w && temp > mstans) ans = temp;
    	}
    	printf("%lld",ans);
    	return 0;
    }
    
  • 相关阅读:
    发邮件(asp.net2.0)(转)
    教师节祝福短信
    量子学习及思考13人机交互很快将面临交互模式的进化2 人工智能
    MongoDB(1) 简单配置
    CreateCompatibleDC
    设置环境变量的作用
    vs2008中调用matlab生成的dll
    resolve the maado15.dll
    错误3:系统找不到指定的路径
    C++关键字volatile
  • 原文地址:https://www.cnblogs.com/MisakaAzusa/p/9913657.html
Copyright © 2020-2023  润新知