• Scrapy-redis分布式+Scrapy-redis实战


    【学习目标】

    1. Scrapy-redis分布式的运行流程
    2. Scheduler与Scrapy自带的Scheduler有什么区别
    3. Duplication Filter作用
    4. 源码自带三种spider的使用

    6. Scrapy-redis分布式组件

    Scrapy 和 scrapy-redis的区别

    Scrapy 是一个通用的爬虫框架,但是不支持分布式,Scrapy-redis是为了更方便地实现Scrapy分布式爬取,而提供了一些以redis为基础的组件(仅有组件)。

    pip install scrapy-redis

    Scrapy-redis提供了下面四种组件(components):(四种组件意味着这四个模块都要做相应的修改)

    1. Scheduler
    2. Duplication Filter
    3. Item Pipeline
    4. Base Spider

    scrapy-redis架构

     

    如上图所⽰示,scrapy-redis在scrapy的架构上增加了redis,基于redis的特性拓展了如下组件:

    Scheduler

    Scrapy改造了python本来的collection.deque(双向队列)形成了自己的Scrapy queue(https://github.com/scrapy/queuelib/blob/master/queuelib/queue.py)),但是Scrapy多个spider不能共享待爬取队列Scrapy queue, 即Scrapy本身不支持爬虫分布式,scrapy-redis 的解决是把这个Scrapy queue换成redis数据库(也是指redis队列),从同一个redis-server存放要爬取的request,便能让多个spider去同一个数据库里读取。

    Scrapy中跟“待爬队列”直接相关的就是调度器Scheduler,它负责对新的request进行入列操作(加入Scrapy queue),取出下一个要爬取的request(从Scrapy queue中取出)等操作。它把待爬队列按照优先级建立了一个字典结构,比如:

        {

            优先级0 : 队列0

            优先级1 : 队列1

            优先级2 : 队列2

        }

    然后根据request中的优先级,来决定该入哪个队列,出列时则按优先级较小的优先出列。为了管理这个比较高级的队列字典,Scheduler需要提供一系列的方法。但是原来的Scheduler已经无法使用,所以使用Scrapy-redis的scheduler组件。

    Duplication Filter:

    Scrapy中用集合实现这个request去重功能,Scrapy中把已经发送的request指纹放入到一个集合中,把下一个request的指纹拿到集合中比对,如果该指纹存在于集合中,说明这个request发送过了,如果没有则继续操作。这个核心的判重功能是这样实现的:

    def request_seen(self, request):
            # self.request_figerprints就是一个指纹集合 
    
            fp = self.request_fingerprint(request)
    
            # 这就是判重的核心操作 
    
            if fp in self.fingerprints:
    
                return True
    
            self.fingerprints.add(fp)
    
            if self.file:
    
                self.file.write(fp + os.linesep)

    在scrapy-redis中去重是由Duplication Filter组件来实现的,它通过redis的set 不重复的特性,巧妙的实现了Duplication Filter去重。scrapy-redis调度器从引擎接受request,将request的指纹存⼊redis的set检查是否重复,并将不重复的request push写⼊redis的 request queue。

    引擎请求request(Spider发出的)时,调度器从redis的request queue队列⾥里根据优先级pop 出⼀个request 返回给引擎,引擎将此request发给spider处理。

    Item Pipeline

    引擎将(Spider返回的)爬取到的Item给Item Pipeline,scrapy-redis 的Item Pipeline将爬取到的 Item 存⼊redis的 items queue。

    修改过Item Pipeline可以很方便的根据 key 从 items queue 提取item,从⽽实现 items processes集群。

    Base Spider:

    不再使用scrapy原有的Spider类,重写的RedisSpider继承了Spider和RedisMixin这两个类,RedisMixin是用来从redis读取url的类。

    当我们生成一个Spider继承RedisSpider时,调用setup_redis函数,这个函数会去连接redis数据库,然后会设置signals(信号):

    • 一个是当spider空闲时候的signal,会调用spider_idle函数,这个函数调用schedule_next_request函数,保证spider是一直活着的状态,并且抛出DontCloseSpider异常。
    • 一个是当抓到一个item时的signal,会调用item_scraped函数,这个函数会调用schedule_next_request函数,获取下一个request。

    6.1. 源码分析参考:Connection

    官方站点:https://github.com/rolando/scrapy-redis

    scrapy-redis的官方文档写的比较简洁,没有提及其运行原理,所以如果想全面的理解分布式爬虫的运行原理,还是得看scrapy-redis的源代码才行。

    scrapy-redis工程的主体还是是redis和scrapy两个库,工程本身实现的东西不是很多,这个工程就像胶水一样,把这两个插件粘结了起来。下面我们来看看,scrapy-redis的每一个源代码文件都实现了什么功能,最后如何实现分布式的爬虫系统:

    connection.py

    负责根据setting中配置实例化redis连接。被dupefilter和scheduler调用,总之涉及到redis存取的都要使用到这个模块。

    # 这里引入了redis模块,这个是redis-python库的接口,用于通过python访问redis数据库,
    # 这个文件主要是实现连接redis数据库的功能,这些连接接口在其他文件中经常被用到
    
    import redis
    import six
    
    from scrapy.utils.misc import load_object
    
    DEFAULT_REDIS_CLS = redis.StrictRedis
    
    # 可以在settings文件中配置套接字的超时时间、等待时间等
    # Sane connection defaults.
    DEFAULT_PARAMS = {
        'socket_timeout': 30,
        'socket_connect_timeout': 30,
        'retry_on_timeout': True,
    }
    
    # 要想连接到redis数据库,和其他数据库差不多,需要一个ip地址、端口号、用户名密码(可选)和一个整形的数据库编号
    # Shortcut maps 'setting name' -> 'parmater name'.
    SETTINGS_PARAMS_MAP = {
        'REDIS_URL': 'url',
        'REDIS_HOST': 'host',
        'REDIS_PORT': 'port',
    }
    
    
    def get_redis_from_settings(settings):
        """Returns a redis client instance from given Scrapy settings object.
        This function uses ``get_client`` to instantiate the client and uses
        ``DEFAULT_PARAMS`` global as defaults values for the parameters. You can
        override them using the ``REDIS_PARAMS`` setting.
        Parameters
        ----------
        settings : Settings
            A scrapy settings object. See the supported settings below.
        Returns
        -------
        server
            Redis client instance.
        Other Parameters
        ----------------
        REDIS_URL : str, optional
            Server connection URL.
        REDIS_HOST : str, optional
            Server host.
        REDIS_PORT : str, optional
            Server port.
        REDIS_PARAMS : dict, optional
            Additional client parameters.
        """
        params = DEFAULT_PARAMS.copy()
        params.update(settings.getdict('REDIS_PARAMS'))
        # XXX: Deprecate REDIS_* settings.
        for source, dest in SETTINGS_PARAMS_MAP.items():
            val = settings.get(source)
            if val:
                params[dest] = val
    
        # Allow ``redis_cls`` to be a path to a class.
        if isinstance(params.get('redis_cls'), six.string_types):
            params['redis_cls'] = load_object(params['redis_cls'])
    
        # 返回的是redis库的Redis对象,可以直接用来进行数据操作的对象
        return get_redis(**params)
    
    
    # Backwards compatible alias.
    from_settings = get_redis_from_settings
    
    
    def get_redis(**kwargs):
        """Returns a redis client instance.
        Parameters
        ----------
        redis_cls : class, optional
            Defaults to ``redis.StrictRedis``.
        url : str, optional
            If given, ``redis_cls.from_url`` is used to instantiate the class.
        **kwargs
            Extra parameters to be passed to the ``redis_cls`` class.
        Returns
        -------
        server
            Redis client instance.
        """
        redis_cls = kwargs.pop('redis_cls', DEFAULT_REDIS_CLS)
        url = kwargs.pop('url', None)
    
    
        if url:
            return redis_cls.from_url(url, **kwargs)
        else:
            return redis_cls(**kwargs)
    connection.py

    6.2. 源码分析参考:Dupefilter

    dupefilter.py

    负责执行requst的去重,实现的很有技巧性,使用redis的set数据结构。但是注意scheduler并不使用其中用于在这个模块中实现的dupefilter键做request的调度,而是使用queue.py模块中实现的queue。

    当request不重复时,将其存入到queue中,调度时将其弹出。

    import logging
    
    import time
    
     
    
    from scrapy.dupefilters import BaseDupeFilter
    
    from scrapy.utils.request import request_fingerprint
    
     
    
    from .connection import get_redis_from_settings
    
     
    
     
    
    DEFAULT_DUPEFILTER_KEY = "dupefilter:%(timestamp)s"
    
     
    
    logger = logging.getLogger(__name__)
    
     
    
     
    
    # TODO: Rename class to RedisDupeFilter.
    
    class RFPDupeFilter(BaseDupeFilter):
    
        """Redis-based request duplicates filter.
    
        This class can also be used with default Scrapy's scheduler.
    
        """
    
     
    
        logger = logger
    
     
    
        def __init__(self, server, key, debug=False):
    
            """Initialize the duplicates filter.
    
            Parameters
    
            ----------
    
            server : redis.StrictRedis
    
                The redis server instance.
    
            key : str
    
                Redis key Where to store fingerprints.
    
            debug : bool, optional
    
                Whether to log filtered requests.
    
            """
    
            self.server = server
    
            self.key = key
    
            self.debug = debug
    
            self.logdupes = True
    
     
    
        @classmethod
    
        def from_settings(cls, settings):
    
            """Returns an instance from given settings.
    
            This uses by default the key ``dupefilter:<timestamp>``. When using the
    
            ``scrapy_redis.scheduler.Scheduler`` class, this method is not used as
    
            it needs to pass the spider name in the key.
    
            Parameters
    
            ----------
    
            settings : scrapy.settings.Settings
    
            Returns
    
            -------
    
            RFPDupeFilter
    
                A RFPDupeFilter instance.
    
            """
    
            server = get_redis_from_settings(settings)
    
            # XXX: This creates one-time key. needed to support to use this
    
            # class as standalone dupefilter with scrapy's default scheduler
    
            # if scrapy passes spider on open() method this wouldn't be needed
    
            # TODO: Use SCRAPY_JOB env as default and fallback to timestamp.
    
            key = DEFAULT_DUPEFILTER_KEY % {'timestamp': int(time.time())}
    
            debug = settings.getbool('DUPEFILTER_DEBUG')
    
            return cls(server, key=key, debug=debug)
    
     
    
        @classmethod
    
        def from_crawler(cls, crawler):
    
            """Returns instance from crawler.
    
            Parameters
    
            ----------
    
            crawler : scrapy.crawler.Crawler
    
            Returns
    
            -------
    
            RFPDupeFilter
    
                Instance of RFPDupeFilter.
    
            """
    
            return cls.from_settings(crawler.settings)
    
     
    
        def request_seen(self, request):
    
            """Returns True if request was already seen.
    
            Parameters
    
            ----------
    
            request : scrapy.http.Request
    
            Returns
    
            -------
    
            bool
    
            """
    
            fp = self.request_fingerprint(request)
    
            # This returns the number of values added, zero if already exists.
    
            added = self.server.sadd(self.key, fp)
    
            return added == 0
    
     
    
        def request_fingerprint(self, request):
    
            """Returns a fingerprint for a given request.
    
            Parameters
    
            ----------
    
            request : scrapy.http.Request
    
            Returns
    
            -------
    
            str
    
            """
    
            return request_fingerprint(request)
    
     
    
        def close(self, reason=''):
    
            """Delete data on close. Called by Scrapy's scheduler.
    
            Parameters
    
            ----------
    
            reason : str, optional
    
            """
    
            self.clear()
    
     
    
        def clear(self):
    
            """Clears fingerprints data."""
    
            self.server.delete(self.key)
    
     
    
        def log(self, request, spider):
    
            """Logs given request.
    
            Parameters
    
            ----------
    
            request : scrapy.http.Request
    
            spider : scrapy.spiders.Spider
    
            """
    
            if self.debug:
    
                msg = "Filtered duplicate request: %(request)s"
    
                self.logger.debug(msg, {'request': request}, extra={'spider': spider})
    
            elif self.logdupes:
    
                msg = ("Filtered duplicate request %(request)s"
    
                       " - no more duplicates will be shown"
    
                       " (see DUPEFILTER_DEBUG to show all duplicates)")
    
                msg = "Filtered duplicate request: %(request)s"
    
                self.logger.debug(msg, {'request': request}, extra={'spider': spider})
    
                self.logdupes = False
    View Code

    这个文件看起来比较复杂,重写了scrapy本身已经实现的request判重功能。因为本身scrapy单机跑的话,只需要读取内存中的request队列或者持久化的request队列(scrapy默认的持久化似乎是json格式的文件,不是数据库)就能判断这次要发出的request url是否已经请求过或者正在调度(本地读就行了)。而分布式跑的话,就需要各个主机上的scheduler都连接同一个数据库的同一个request池来判断这次的请求是否是重复的了。

    在这个文件中,通过继承BaseDupeFilter重写他的方法,实现了基于redis的判重。根据源代码来看,scrapy-redis使用了scrapy本身的一个fingerprint接口request_fingerprint,这个接口很有趣,根据scrapy文档所说,他通过hash来判断两个url是否相同(相同的url会生成相同的hash结果),但是当两个url的地址相同,get型参数相同但是顺序不同时,也会生成相同的hash结果(这个真的比较神奇。。。)所以scrapy-redis依旧使用url的fingerprint来判断request请求是否已经出现过。

    这个类通过连接redis,使用一个key来向redis的一个set中插入fingerprint(这个key对于同一种spider是相同的,redis是一个key-value的数据库,如果key是相同的,访问到的值就是相同的,这里使用spider名字+DupeFilter的key就是为了在不同主机上的不同爬虫实例,只要属于同一种spider,就会访问到同一个set,而这个set就是他们的url判重池),如果返回值为0,说明该set中该fingerprint已经存在(因为集合是没有重复值的),则返回False,如果返回值为1,说明添加了一个fingerprint到set中,则说明这个request没有重复,于是返回True,还顺便把新fingerprint加入到数据库中了。 DupeFilter判重会在scheduler类中用到,每一个request在进入调度之前都要进行判重,如果重复就不需要参加调度,直接舍弃就好了,不然就是白白浪费资源。

    6.3. 源码分析参考:Picklecompat

    picklecompat.py

    """A pickle wrapper module with protocol=-1 by default."""
    
     
    
    try:
    
        import cPickle as pickle  # PY2
    
    except ImportError:
    
        import pickle
    
     
    
     
    
    def loads(s):
    
        return pickle.loads(s)
    
     
    
     
    
    def dumps(obj):
    
        return pickle.dumps(obj, protocol=-1)
    picklecompat.py

    这里实现了loads和dumps两个函数,其实就是实现了一个序列化器。

    因为redis数据库不能存储复杂对象(key部分只能是字符串,value部分只能是字符串,字符串列表,字符串集合和hash),所以我们存啥都要先串行化成文本才行。

    这里使用的就是python的pickle模块,一个兼容py2和py3的串行化工具。这个serializer主要用于一会的scheduler存reuqest对象。

    6.4. 源码分析参考:Pipelines

    pipelines.py

    from scrapy.utils.misc import load_object
    
    from scrapy.utils.serialize import ScrapyJSONEncoder
    
    from twisted.internet.threads import deferToThread
    
     
    
    from . import connection
    
     
    
     
    
    default_serialize = ScrapyJSONEncoder().encode
    
     
    
     
    
    class RedisPipeline(object):
    
        """Pushes serialized item into a redis list/queue"""
    
     
    
        def __init__(self, server,
    
                     key='%(spider)s:items',
    
                     serialize_func=default_serialize):
    
            self.server = server
    
            self.key = key
    
            self.serialize = serialize_func
    
     
    
        @classmethod
    
        def from_settings(cls, settings):
    
            params = {
    
                'server': connection.from_settings(settings),
    
            }
    
            if settings.get('REDIS_ITEMS_KEY'):
    
                params['key'] = settings['REDIS_ITEMS_KEY']
    
            if settings.get('REDIS_ITEMS_SERIALIZER'):
    
                params['serialize_func'] = load_object(
    
                    settings['REDIS_ITEMS_SERIALIZER']
    
                )
    
     
    
            return cls(**params)
    
     
    
        @classmethod
    
        def from_crawler(cls, crawler):
    
            return cls.from_settings(crawler.settings)
    
     
    
        def process_item(self, item, spider):
    
            return deferToThread(self._process_item, item, spider)
    
     
    
        def _process_item(self, item, spider):
    
            key = self.item_key(item, spider)
    
            data = self.serialize(item)
    
            self.server.rpush(key, data)
    
            return item
    
     
    
        def item_key(self, item, spider):
    
            """Returns redis key based on given spider.
    
            Override this function to use a different key depending on the item
    
            and/or spider.
    
            """
    
            return self.key % {'spider': spider.name}
    piplines.py

    这是是用来实现分布式处理的作用。它将Item存储在redis中以实现分布式处理。由于在这里需要读取配置,所以就用到了from_crawler()函数。

    pipelines文件实现了一个item pipieline类,和scrapy的item pipeline是同一个对象,通过从settings中拿到我们配置的REDIS_ITEMS_KEY作为key,把item串行化之后存入redis数据库对应的value中(这个value可以看出是个list,我们的每个item是这个list中的一个结点),这个pipeline把提取出的item存起来,主要是为了方便我们延后处理数据。

    6.5. 源码分析参考:Queue

    queue.py

    该文件实现了几个容器类,可以看这些容器和redis交互频繁,同时使用了我们上边picklecompat中定义的序列化器。这个文件实现的几个容器大体相同,只不过一个是队列,一个是栈,一个是优先级队列,这三个容器到时候会被scheduler对象实例化,来实现request的调度。比如我们使用SpiderQueue为调度队列的类型,到时候request的调度方法就是先进先出,而实用SpiderStack就是先进后出了。

    从SpiderQueue的实现看出来,他的push函数就和其他容器的一样,只不过push进去的request请求先被scrapy的接口request_to_dict变成了一个dict对象(因为request对象实在是比较复杂,有方法有属性不好串行化),之后使用picklecompat中的serializer串行化为字符串,然后使用一个特定的key存入redis中(该key在同一种spider中是相同的)。而调用pop时,其实就是从redis用那个特定的key去读其值(一个list),从list中读取最早进去的那个,于是就先进先出了。 这些容器类都会作为scheduler调度request的容器,scheduler在每个主机上都会实例化一个,并且和spider一一对应,所以分布式运行时会有一个spider的多个实例和一个scheduler的多个实例存在于不同的主机上,但是,因为scheduler都是用相同的容器,而这些容器都连接同一个redis服务器,又都使用spider名加queue来作为key读写数据,所以不同主机上的不同爬虫实例公用一个request调度池,实现了分布式爬虫之间的统一调度。

    from scrapy.utils.reqser import request_to_dict, request_from_dict
    
     
    
    from . import picklecompat
    
     
    
     
    
    class Base(object):
    
        """Per-spider queue/stack base class"""
    
     
    
        def __init__(self, server, spider, key, serializer=None):
    
            """Initialize per-spider redis queue.
    
            Parameters:
    
                server -- redis connection
    
                spider -- spider instance
    
                key -- key for this queue (e.g. "%(spider)s:queue")
    
            """
    
            if serializer is None:
    
                # Backward compatibility.
    
                # TODO: deprecate pickle.
    
                serializer = picklecompat
    
            if not hasattr(serializer, 'loads'):
    
                raise TypeError("serializer does not implement 'loads' function: %r"
    
                                % serializer)
    
            if not hasattr(serializer, 'dumps'):
    
                raise TypeError("serializer '%s' does not implement 'dumps' function: %r"
    
                                % serializer)
    
     
    
            self.server = server
    
            self.spider = spider
    
            self.key = key % {'spider': spider.name}
    
            self.serializer = serializer
    
     
    
        def _encode_request(self, request):
    
            """Encode a request object"""
    
            obj = request_to_dict(request, self.spider)
    
            return self.serializer.dumps(obj)
    
     
    
        def _decode_request(self, encoded_request):
    
            """Decode an request previously encoded"""
    
            obj = self.serializer.loads(encoded_request)
    
            return request_from_dict(obj, self.spider)
    
     
    
        def __len__(self):
    
            """Return the length of the queue"""
    
            raise NotImplementedError
    
     
    
        def push(self, request):
    
            """Push a request"""
    
            raise NotImplementedError
    
     
    
        def pop(self, timeout=0):
    
            """Pop a request"""
    
            raise NotImplementedError
    
     
    
        def clear(self):
    
            """Clear queue/stack"""
    
            self.server.delete(self.key)
    
     
    
     
    
    class SpiderQueue(Base):
    
        """Per-spider FIFO queue"""
    
     
    
        def __len__(self):
    
            """Return the length of the queue"""
    
            return self.server.llen(self.key)
    
     
    
        def push(self, request):
    
            """Push a request"""
    
            self.server.lpush(self.key, self._encode_request(request))
    
     
    
        def pop(self, timeout=0):
    
            """Pop a request"""
    
            if timeout > 0:
    
                data = self.server.brpop(self.key, timeout)
    
                if isinstance(data, tuple):
    
                    data = data[1]
    
            else:
    
                data = self.server.rpop(self.key)
    
            if data:
    
                return self._decode_request(data)
    
     
    
     
    
    class SpiderPriorityQueue(Base):
    
        """Per-spider priority queue abstraction using redis' sorted set"""
    
     
    
        def __len__(self):
    
            """Return the length of the queue"""
    
            return self.server.zcard(self.key)
    
     
    
        def push(self, request):
    
            """Push a request"""
    
            data = self._encode_request(request)
    
            score = -request.priority
    
            # We don't use zadd method as the order of arguments change depending on
    
            # whether the class is Redis or StrictRedis, and the option of using
    
            # kwargs only accepts strings, not bytes.
    
            self.server.execute_command('ZADD', self.key, score, data)
    
     
    
        def pop(self, timeout=0):
    
            """
    
            Pop a request
    
            timeout not support in this queue class
    
            """
    
            # use atomic range/remove using multi/exec
    
            pipe = self.server.pipeline()
    
            pipe.multi()
    
            pipe.zrange(self.key, 0, 0).zremrangebyrank(self.key, 0, 0)
    
            results, count = pipe.execute()
    
            if results:
    
                return self._decode_request(results[0])
    
     
    
     
    
    class SpiderStack(Base):
    
        """Per-spider stack"""
    
     
    
        def __len__(self):
    
            """Return the length of the stack"""
    
            return self.server.llen(self.key)
    
     
    
        def push(self, request):
    
            """Push a request"""
    
            self.server.lpush(self.key, self._encode_request(request))
    
     
    
        def pop(self, timeout=0):
    
            """Pop a request"""
    
            if timeout > 0:
    
                data = self.server.blpop(self.key, timeout)
    
                if isinstance(data, tuple):
    
                    data = data[1]
    
            else:
    
                data = self.server.lpop(self.key)
    
     
    
            if data:
    
                return self._decode_request(data)
    
     
    
     
    
    __all__ = ['SpiderQueue', 'SpiderPriorityQueue', 'SpiderStack']
    Queue

    6.6. 源码分析参考:Scheduler

    scheduler.py

    此扩展是对scrapy中自带的scheduler的替代(在settings的SCHEDULER变量中指出),正是利用此扩展实现crawler的分布式调度。其利用的数据结构来自于queue中实现的数据结构。

    scrapy-redis所实现的两种分布式:爬虫分布式以及item处理分布式就是由模块scheduler和模块pipelines实现。上述其它模块作为为二者辅助的功能模块

    import importlib
    import six
    
    from scrapy.utils.misc import load_object
    
    from . import connection
    
    
    # TODO: add SCRAPY_JOB support.
    class Scheduler(object):
        """Redis-based scheduler"""
    
        def __init__(self, server,
                     persist=False,
                     flush_on_start=False,
                     queue_key='%(spider)s:requests',
                     queue_cls='scrapy_redis.queue.SpiderPriorityQueue',
                     dupefilter_key='%(spider)s:dupefilter',
                     dupefilter_cls='scrapy_redis.dupefilter.RFPDupeFilter',
                     idle_before_close=0,
                     serializer=None):
            """Initialize scheduler.
            Parameters
            ----------
            server : Redis
                The redis server instance.
            persist : bool
                Whether to flush requests when closing. Default is False.
            flush_on_start : bool
                Whether to flush requests on start. Default is False.
            queue_key : str
                Requests queue key.
            queue_cls : str
                Importable path to the queue class.
            dupefilter_key : str
                Duplicates filter key.
            dupefilter_cls : str
                Importable path to the dupefilter class.
            idle_before_close : int
                Timeout before giving up.
            """
            if idle_before_close < 0:
                raise TypeError("idle_before_close cannot be negative")
    
            self.server = server
            self.persist = persist
            self.flush_on_start = flush_on_start
            self.queue_key = queue_key
            self.queue_cls = queue_cls
            self.dupefilter_cls = dupefilter_cls
            self.dupefilter_key = dupefilter_key
            self.idle_before_close = idle_before_close
            self.serializer = serializer
            self.stats = None
    
        def __len__(self):
            return len(self.queue)
    
        @classmethod
        def from_settings(cls, settings):
            kwargs = {
                'persist': settings.getbool('SCHEDULER_PERSIST'),
                'flush_on_start': settings.getbool('SCHEDULER_FLUSH_ON_START'),
                'idle_before_close': settings.getint('SCHEDULER_IDLE_BEFORE_CLOSE'),
            }
    
            # If these values are missing, it means we want to use the defaults.
            optional = {
                # TODO: Use custom prefixes for this settings to note that are
                # specific to scrapy-redis.
                'queue_key': 'SCHEDULER_QUEUE_KEY',
                'queue_cls': 'SCHEDULER_QUEUE_CLASS',
                'dupefilter_key': 'SCHEDULER_DUPEFILTER_KEY',
                # We use the default setting name to keep compatibility.
                'dupefilter_cls': 'DUPEFILTER_CLASS',
                'serializer': 'SCHEDULER_SERIALIZER',
            }
            for name, setting_name in optional.items():
                val = settings.get(setting_name)
                if val:
                    kwargs[name] = val
    
            # Support serializer as a path to a module.
            if isinstance(kwargs.get('serializer'), six.string_types):
                kwargs['serializer'] = importlib.import_module(kwargs['serializer'])
    
            server = connection.from_settings(settings)
            # Ensure the connection is working.
            server.ping()
    
            return cls(server=server, **kwargs)
    
        @classmethod
        def from_crawler(cls, crawler):
            instance = cls.from_settings(crawler.settings)
            # FIXME: for now, stats are only supported from this constructor
            instance.stats = crawler.stats
            return instance
    
        def open(self, spider):
            self.spider = spider
    
            try:
                self.queue = load_object(self.queue_cls)(
                    server=self.server,
                    spider=spider,
                    key=self.queue_key % {'spider': spider.name},
                    serializer=self.serializer,
                )
            except TypeError as e:
                raise ValueError("Failed to instantiate queue class '%s': %s",
                                 self.queue_cls, e)
    
            try:
                self.df = load_object(self.dupefilter_cls)(
                    server=self.server,
                    key=self.dupefilter_key % {'spider': spider.name},
                    debug=spider.settings.getbool('DUPEFILTER_DEBUG'),
                )
            except TypeError as e:
                raise ValueError("Failed to instantiate dupefilter class '%s': %s",
                                 self.dupefilter_cls, e)
    
            if self.flush_on_start:
                self.flush()
            # notice if there are requests already in the queue to resume the crawl
            if len(self.queue):
                spider.log("Resuming crawl (%d requests scheduled)" % len(self.queue))
    
        def close(self, reason):
            if not self.persist:
                self.flush()
    
        def flush(self):
            self.df.clear()
            self.queue.clear()
    
        def enqueue_request(self, request):
            if not request.dont_filter and self.df.request_seen(request):
                self.df.log(request, self.spider)
                return False
            if self.stats:
                self.stats.inc_value('scheduler/enqueued/redis', spider=self.spider)
            self.queue.push(request)
            return True
    
        def next_request(self):
            block_pop_timeout = self.idle_before_close
            request = self.queue.pop(block_pop_timeout)
            if request and self.stats:
                self.stats.inc_value('scheduler/dequeued/redis', spider=self.spider)
            return request
    
        def has_pending_requests(self):
            return len(self) > 0
    Scheduler.pu

    这个文件重写了scheduler类,用来代替scrapy.core.scheduler的原有调度器。其实对原有调度器的逻辑没有很大的改变,主要是使用了redis作为数据存储的媒介,以达到各个爬虫之间的统一调度。 scheduler负责调度各个spider的request请求,scheduler初始化时,通过settings文件读取queue和dupefilters的类型(一般就用上边默认的),配置queue和dupefilters使用的key(一般就是spider name加上queue或者dupefilters,这样对于同一种spider的不同实例,就会使用相同的数据块了)。每当一个request要被调度时,enqueue_request被调用,scheduler使用dupefilters来判断这个url是否重复,如果不重复,就添加到queue的容器中(先进先出,先进后出和优先级都可以,可以在settings中配置)。当调度完成时,next_request被调用,scheduler就通过queue容器的接口,取出一个request,把他发送给相应的spider,让spider进行爬取工作。

    6.7. 源码分析参考:Spider

    spider.py

    设计的这个spider从redis中读取要爬的url,然后执行爬取,若爬取过程中返回更多的url,那么继续进行直至所有的request完成。之后继续从redis中读取url,循环这个过程。

    分析:在这个spider中通过connect signals.spider_idle信号实现对crawler状态的监视。当idle时,返回新的make_requests_from_url(url)给引擎,进而交给调度器调度。

    from scrapy import signals
    
    from scrapy.exceptions import DontCloseSpider
    
    from scrapy.spiders import Spider, CrawlSpider
    
     
    
    from . import connection
    
     
    
     
    
    # Default batch size matches default concurrent requests setting.
    
    DEFAULT_START_URLS_BATCH_SIZE = 16
    
    DEFAULT_START_URLS_KEY = '%(name)s:start_urls'
    
     
    
     
    
    class RedisMixin(object):
    
        """Mixin class to implement reading urls from a redis queue."""
    
        # Per spider redis key, default to DEFAULT_START_URLS_KEY.
    
        redis_key = None
    
        # Fetch this amount of start urls when idle. Default to DEFAULT_START_URLS_BATCH_SIZE.
    
        redis_batch_size = None
    
        # Redis client instance.
    
        server = None
    
     
    
        def start_requests(self):
    
            """Returns a batch of start requests from redis."""
    
            return self.next_requests()
    
     
    
        def setup_redis(self, crawler=None):
    
            """Setup redis connection and idle signal.
    
            This should be called after the spider has set its crawler object.
    
            """
    
            if self.server is not None:
    
                return
    
     
    
            if crawler is None:
    
                # We allow optional crawler argument to keep backwards
    
                # compatibility.
    
                # XXX: Raise a deprecation warning.
    
                crawler = getattr(self, 'crawler', None)
    
     
    
            if crawler is None:
    
                raise ValueError("crawler is required")
    
     
    
            settings = crawler.settings
    
     
    
            if self.redis_key is None:
    
                self.redis_key = settings.get(
    
                    'REDIS_START_URLS_KEY', DEFAULT_START_URLS_KEY,
    
                )
    
     
    
            self.redis_key = self.redis_key % {'name': self.name}
    
     
    
            if not self.redis_key.strip():
    
                raise ValueError("redis_key must not be empty")
    
     
    
            if self.redis_batch_size is None:
    
                self.redis_batch_size = settings.getint(
    
                    'REDIS_START_URLS_BATCH_SIZE', DEFAULT_START_URLS_BATCH_SIZE,
    
                )
    
     
    
            try:
    
                self.redis_batch_size = int(self.redis_batch_size)
    
            except (TypeError, ValueError):
    
                raise ValueError("redis_batch_size must be an integer")
    
     
    
            self.logger.info("Reading start URLs from redis key '%(redis_key)s' "
    
                             "(batch size: %(redis_batch_size)s)", self.__dict__)
    
     
    
            self.server = connection.from_settings(crawler.settings)
    
            # The idle signal is called when the spider has no requests left,
    
            # that's when we will schedule new requests from redis queue
    
            crawler.signals.connect(self.spider_idle, signal=signals.spider_idle)
    
     
    
        def next_requests(self):
    
            """Returns a request to be scheduled or none."""
    
            use_set = self.settings.getbool('REDIS_START_URLS_AS_SET')
    
            fetch_one = self.server.spop if use_set else self.server.lpop
    
            # XXX: Do we need to use a timeout here?
    
            found = 0
    
            while found < self.redis_batch_size:
    
                data = fetch_one(self.redis_key)
    
                if not data:
    
                    # Queue empty.
    
                    break
    
                req = self.make_request_from_data(data)
    
                if req:
    
                    yield req
    
                    found += 1
    
                else:
    
                    self.logger.debug("Request not made from data: %r", data)
    
     
    
            if found:
    
                self.logger.debug("Read %s requests from '%s'", found, self.redis_key)
    
     
    
        def make_request_from_data(self, data):
    
            # By default, data is an URL.
    
            if '://' in data:
    
                return self.make_requests_from_url(data)
    
            else:
    
                self.logger.error("Unexpected URL from '%s': %r", self.redis_key, data)
    
     
    
        def schedule_next_requests(self):
    
            """Schedules a request if available"""
    
            for req in self.next_requests():
    
                self.crawler.engine.crawl(req, spider=self)
    
     
    
        def spider_idle(self):
    
            """Schedules a request if available, otherwise waits."""
    
            # XXX: Handle a sentinel to close the spider.
    
            self.schedule_next_requests()
    
            raise DontCloseSpider
    
     
    
     
    
    class RedisSpider(RedisMixin, Spider):
    
        """Spider that reads urls from redis queue when idle."""
    
     
    
        @classmethod
    
        def from_crawler(self, crawler, *args, **kwargs):
    
            obj = super(RedisSpider, self).from_crawler(crawler, *args, **kwargs)
    
            obj.setup_redis(crawler)
    
            return obj
    
     
    
     
    
    class RedisCrawlSpider(RedisMixin, CrawlSpider):
    
        """Spider that reads urls from redis queue when idle."""
    
     
    
        @classmethod
    
        def from_crawler(self, crawler, *args, **kwargs):
    
            obj = super(RedisCrawlSpider, self).from_crawler(crawler, *args, **kwargs)
    
            obj.setup_redis(crawler)
    
            return obj
    spider.py

    spider的改动也不是很大,主要是通过connect接口,给spider绑定了spider_idle信号,spider初始化时,通过setup_redis函数初始化好和redis的连接,之后通过next_requests函数从redis中取出strat url,使用的key是settings中REDIS_START_URLS_AS_SET定义的(注意了这里的初始化url池和我们上边的queue的url池不是一个东西,queue的池是用于调度的,初始化url池是存放入口url的,他们都存在redis中,但是使用不同的key来区分,就当成是不同的表吧),spider使用少量的start url,可以发展出很多新的url,这些url会进入scheduler进行判重和调度。直到spider跑到调度池内没有url的时候,会触发spider_idle信号,从而触发spider的next_requests函数,再次从redis的start url池中读取一些url。

    总结

    最后总结一下scrapy-redis的总体思路:这个工程通过重写scheduler和spider类,实现了调度、spider启动和redis的交互。实现新的dupefilter和queue类,达到了判重和调度容器和redis的交互,因为每个主机上的爬虫进程都访问同一个redis数据库,所以调度和判重都统一进行统一管理,达到了分布式爬虫的目的。 当spider被初始化时,同时会初始化一个对应的scheduler对象,这个调度器对象通过读取settings,配置好自己的调度容器queue和判重工具dupefilter。每当一个spider产出一个request的时候,scrapy内核会把这个reuqest递交给这个spider对应的scheduler对象进行调度,scheduler对象通过访问redis对request进行判重,如果不重复就把他添加进redis中的调度池。当调度条件满足时,scheduler对象就从redis的调度池中取出一个request发送给spider,让他爬取。当spider爬取的所有暂时可用url之后,scheduler发现这个spider对应的redis的调度池空了,于是触发信号spider_idle,spider收到这个信号之后,直接连接redis读取strart url池,拿去新的一批url入口,然后再次重复上边的工作。

    7. Scrapy-redis实战

    从零搭建Redis-Scrapy分布式爬虫

     

    Scrapy-Redis分布式策略:

    假设有三台电脑:Windows 10、Ubuntu 16.04、Windows 10,任意一台电脑都可以作为 Master端 或 Slaver端,比如:

    Master(核心服务器) :使用 Windows 10,搭建一个Redis数据库,不负责爬取,只负责url指纹判重、Request的分配,以及数据的存储

    Slaver(爬虫程序执行端) :使用 Ubuntu 16.04、Windows 10,负责执行爬虫程序,运行过程中提交新的Request给Master

     

    1. 首先Slaver端从Master端拿任务(Request、url)进行数据抓取,Slaver抓取数据的同时,产生新任务的Request便提交给 Master 处理;
    2. Master端只有一个Redis数据库,负责将未处理的Request去重和任务分配,将处理后的Request加入待爬队列,并且存储爬取的数据。

    Scrapy-Redis默认使用的就是这种策略,我们实现起来很简单,因为任务调度等工作Scrapy-Redis都已经帮我们做好了,我们只需要继承RedisSpider、指定redis_key就行了。

    缺点是,Scrapy-Redis调度的任务是Request对象,里面信息量比较大(不仅包含url,还有callback函数、headers等信息),可能导致的结果就是会降低爬虫速度、而且会占用Redis大量的存储空间,所以如果要保证效率,那么就需要一定硬件水平。

    一、安装Redis

    安装Redis:https://github.com/MSOpenTech/redis

    安装完成后,拷贝一份Redis安装目录下的redis.conf到任意目录,建议保存到:/etc/redis/redis.conf (Windows系统可以无需变动)

    二、修改配置文件 redis.conf

    打开你的redis.conf配置文件,示例:

    l  非Windows系统: sudo vi /etc/redis/redis.conf

    l  Windows系统:C:IntelRedisconf edis.conf

    1. Master端redis.conf里注释bind 127.0.0.1,Slave端才能远程连接到Master端的Redis数据库。

     

    1. 在redis3.2之后,redis增加了protected-mode,在这个模式下,即使注释掉了bind 127.0.0.1,再访问redis的时候还是报错,如下:

     

    有两种解决方法:一种是设置protected-mode no,如下:

            

    另一种是设置登录Ridis的密码,如下:

     

    三、测试Slave端远程连接Master端

    测试中,Master端Windows 10 的IP地址为:192.168.199.108

    1. Master端按指定配置文件启动 redis-server,示例:

    l  非Windows系统:sudo redis-server /etc/redis/redis/conf

    l  Windows系统:命令提示符(管理员)模式下执行 redis-server.exe redis.windows.conf读取默认配置即可。

    1. Master端启动本地redis-cli

     

    1. slave端启动redis-cli -h 192.168.0.113 –a ye333222 ,-h参数表示连接到指定主机的redis数据库, -a参数表示需要密码

     

    注意:Slave端无需启动redis-server,Master端启动即可。只要 Slave 端读取到了 Master 端的 Redis 数据库,则表示能够连接成功,可以实施分布式。

    四、Redis数据库桌面管理工具

    这里推荐 Redis Desktop Manager,支持 Windows、Mac OS X、Linux 等平台:

    下载地址:https://redisdesktop.com/download

     

     

    7.1. 源码自带项目说明

    使用scrapy-redis的example来修改

    先从github上拿到scrapy-redis的示例,然后将里面的example-project目录移到指定的地址:

    # clone github scrapy-redis源码文件

    git clone https://github.com/rolando/scrapy-redis.git

    # 直接拿官方的项目范例,改名为自己的项目用(针对懒癌患者)

    mv scrapy-redis/example-project ~/scrapyredis-project

    我们clone到的 scrapy-redis 源码中有自带一个example-project项目,这个项目包含3个spider,分别是dmoz, myspider_redis,mycrawler_redis。

    一、dmoz (class DmozSpider(CrawlSpider))

    这个爬虫继承的是CrawlSpider,它是用来说明Redis的持续性,当我们第一次运行dmoz爬虫,然后Ctrl + C停掉之后,再运行dmoz爬虫,之前的爬取记录是保留在Redis里的。

    分析起来,其实这就是一个 scrapy-redis 版 CrawlSpider 类,需要设置Rule规则,以及callback不能写parse()方法。

    # 执行方式:scrapy crawl dmoz
    
    from scrapy.linkextractors import LinkExtractor
    
    from scrapy.spiders import CrawlSpider, Rule
    
     
    
     
    
    class DmozSpider(CrawlSpider):
    
        """Follow categories and extract links."""
    
        name = 'dmoz'
    
        allowed_domains = [' dmoztools.net']
    
        start_urls = [' http://dmoztools.net/']
    
     
    
        rules = [
    
            Rule(LinkExtractor(
    
                restrict_css=('.top-cat', '.sub-cat', '.cat-item')
    
            ), callback='parse_directory', follow=True),
    
        ]
    
     
    
        def parse_directory(self, response):
    
            for div in response.css('.title-and-desc'):
    
                yield {
    
                    'name': div.css('.site-title::text').extract_first(),
    
                    'description': div.css('.site-descr::text').extract_first().strip(),
    
                    'link': div.css('a::attr(href)').extract_first(),
    
                }

    二、myspider_redis (class MySpider(RedisSpider))

    这个爬虫继承了RedisSpider, 它能够支持分布式的抓取,采用的是basic spider,需要写parse函数。

    其次就是不再有start_urls了,取而代之的是redis_key,scrapy-redis将key从Redis里pop出来,成为请求的url地址。

    from scrapy_redis.spiders import RedisSpider
    
    
    class MySpider(RedisSpider):
        """Spider that reads urls from redis queue (myspider:start_urls)."""
        name = 'myspider_redis'
    
        # 注意redis-key的格式:
        redis_key = 'myspider:start_urls'
    
        # 可选:等效于allowd_domains(),__init__方法按规定格式写,使用时只需要修改super()里的类名参数即可
        def __init__(self, *args, **kwargs):
            # Dynamically define the allowed domains list.
            domain = kwargs.pop('domain', '')
            self.allowed_domains = filter(None, domain.split(','))
    
            # 修改这里的类名为当前类名
            super(MySpider, self).__init__(*args, **kwargs)
    
        def parse(self, response):
            return {
                'name': response.css('title::text').extract_first(),
                'url': response.url,
            }

    注意:

    RedisSpider类 不需要写allowd_domainsstart_urls

    1. scrapy-redis将从在构造方法__init__()里动态定义爬虫爬取域范围,也可以选择直接写allowd_domains
    2. 必须指定redis_key,即启动爬虫的命令,参考格式:redis_key = 'myspider:start_urls'
    3. 根据指定的格式,start_urls将在 Master端的 redis-cli 里 lpush 到 Redis数据库里,RedisSpider 将在数据库里获取start_urls。

    执行方式:

    1. 通过runspider方法执行爬虫的py文件(也可以分次执行多条),爬虫(们)将处于等待准备状态:    scrapy runspider myspider_redis.py
    2. 在Master端的redis-cli输入push指令,参考格式:   $redis > lpush myspider:start_urls http://dmoztools.net/
    3. Slaver端爬虫获取到请求,开始爬取。

    三、mycrawler_redis (class MyCrawler(RedisCrawlSpider))

    这个RedisCrawlSpider类爬虫继承了RedisCrawlSpider,能够支持分布式的抓取。因为采用的是crawlSpider,所以需要遵守Rule规则,以及callback不能写parse()方法。

    同样也不再有start_urls了,取而代之的是redis_key,scrapy-redis将key从Redis里pop出来,成为请求的url地址。

    from scrapy.spiders import Rule
    
    from scrapy.linkextractors import LinkExtractor
    
     
    
    from scrapy_redis.spiders import RedisCrawlSpider
    
     
    
     
    
    class MyCrawler(RedisCrawlSpider):
    
        """Spider that reads urls from redis queue (myspider:start_urls)."""
    
        name = 'mycrawler_redis'
    
        redis_key = 'mycrawler:start_urls'
    
     
    
        rules = (
    
            # follow all links
    
            Rule(LinkExtractor(), callback='parse_page', follow=True),
    
        )
    
     
    
        # __init__方法必须按规定写,使用时只需要修改super()里的类名参数即可
    
        def __init__(self, *args, **kwargs):
    
            # Dynamically define the allowed domains list.
    
            domain = kwargs.pop('domain', '')
    
            self.allowed_domains = filter(None, domain.split(','))
    
     
    
            # 修改这里的类名为当前类名
    
            super(MyCrawler, self).__init__(*args, **kwargs)
    
     
    
        def parse_page(self, response):
    
            return {
    
                'name': response.css('title::text').extract_first(),
    
                'url': response.url,
    
            }

    注意:

    同样的,RedisCrawlSpider类不需要写allowd_domainsstart_urls

    1. scrapy-redis将从在构造方法__init__()里动态定义爬虫爬取域范围,也可以选择直接写allowd_domains
    2. 必须指定redis_key,即启动爬虫的命令,参考格式:redis_key = 'mycrawl:start_urls'
    3. 根据指定的格式,start_urls将在 Master端的 redis-cli 里 lpush 到 Redis数据库里,RedisSpider 将在数据库里获取start_urls。

    执行方式:

    1. 通过runspider方法执行爬虫的py文件(也可以分次执行多条),爬虫(们)将处于等待准备状态:scrapy runspider mycrawler_redis.py
    2. 在Master端的redis-cli输入push指令,参考格式:$redis > lpush mycrawler:start_urls http://dmoztools.net/
    3. 爬虫获取url,开始执行。

    总结:

    1. 如果只是用到Redis的去重和保存功能,就选第一种;
    2. 如果要写分布式,则根据情况,选择第二种、第三种;
    3. 通常情况下,会选择用第三种方式编写深度聚焦爬虫。
    4. Redis数据库的使用
    5. RedisSpider类的使用

    【重点总结】

    1. Redis数据库的使用
    2. RedisSpider类的使用
  • 相关阅读:
    机器学习入门-相关性分析
    R语言-记号体系
    R语言基础
    职位画像分析(pandas/ matplotlib)
    python 可视化工具-matplotlib
    pandas-缺失值处理
    k-means实战-RFM客户价值分群
    药店商品销量分析(python)
    Jike_Time-决策树
    3.7 嵌入式SQL
  • 原文地址:https://www.cnblogs.com/Mint-diary/p/9728435.html
Copyright © 2020-2023  润新知