题解:
一个数列多次前缀和之后, 对于第i个数来说他的答案就是
for(int i = 1; i <= n; ++i){ for(int j = 1; j <= i; ++j){ b[i] = (b[i] + 1ll * a[j] * C(k-1+j-i,j-i)) % mod; } }
唯一注意的就是这个k会到1e9。
观察可能,其实我们最多也就用了n个组合数, 并且这个C(n, m) 的 m 足够小。
所以我们可以根据定义先把这几个组合数先预处理出来。
代码:
#include<bits/stdc++.h> using namespace std; #define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout); #define LL long long #define ULL unsigned LL #define fi first #define se second #define pb push_back #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define lch(x) tr[x].son[0] #define rch(x) tr[x].son[1] #define max3(a,b,c) max(a,max(b,c)) #define min3(a,b,c) min(a,min(b,c)) typedef pair<int,int> pll; const int inf = 0x3f3f3f3f; const int _inf = 0xc0c0c0c0; const LL INF = 0x3f3f3f3f3f3f3f3f; const LL _INF = 0xc0c0c0c0c0c0c0c0; const LL mod = (int)1e9+7; const int N = 2e3 + 100; int n, k; int a[N], b[N]; int inv[N]; int c[N]; void init(){ int MOD = mod; inv[1] = 1; for(int i = 2; i < N; i ++){ inv[i] = (MOD - MOD / i) * 1ll * inv[MOD % i] % MOD; } c[0] = 1; for(int i = 1; i <= n; ++i){ c[i] = 1; int now = k + i - 1; for(int j = 1; j <= i; ++j){ c[i] = 1ll * c[i] * now % mod * inv[j] % mod; --now; } } } int main(){ scanf("%d%d", &n, &k); for(int i = 1; i <= n; ++i) scanf("%d", &a[i]); init(); if(k){ for(int i = 1; i <= n; ++i){ for(int j = 1; j <= i; ++j){ b[i] = (b[i] + 1ll * a[j] * c[i-j]) % mod; } } for(int i = 1; i <= n; ++i) a[i] = b[i]; } for(int i = 1; i <= n; ++i){ printf("%d%c", a[i], " "[i==n]); } return 0; }