• CodeForces 223C Partial Sums 多次前缀和


    Partial Sums

    题解:

    一个数列多次前缀和之后, 对于第i个数来说他的答案就是

    for(int i = 1; i <= n; ++i){
                for(int j = 1; j <= i; ++j){
                    b[i] = (b[i] + 1ll * a[j] * C(k-1+j-i,j-i)) % mod;
                }
            }

    唯一注意的就是这个k会到1e9。

    观察可能,其实我们最多也就用了n个组合数, 并且这个C(n, m) 的 m 足够小。

    所以我们可以根据定义先把这几个组合数先预处理出来。

    代码:

    #include<bits/stdc++.h>
    using namespace std;
    #define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout);
    #define LL long long
    #define ULL unsigned LL
    #define fi first
    #define se second
    #define pb push_back
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define lch(x) tr[x].son[0]
    #define rch(x) tr[x].son[1]
    #define max3(a,b,c) max(a,max(b,c))
    #define min3(a,b,c) min(a,min(b,c))
    typedef pair<int,int> pll;
    const int inf = 0x3f3f3f3f;
    const int _inf = 0xc0c0c0c0;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    const LL _INF = 0xc0c0c0c0c0c0c0c0;
    const LL mod =  (int)1e9+7;
    const int N = 2e3 + 100;
    int n, k;
    int a[N], b[N];
    int inv[N];
    int c[N];
    void init(){
        int MOD = mod;
        inv[1] = 1;
        for(int i = 2; i < N; i ++){
            inv[i] = (MOD - MOD / i) * 1ll * inv[MOD % i] % MOD;
        }
        c[0] = 1;
        for(int i = 1; i <= n; ++i){
            c[i] = 1;
            int now = k + i - 1;
            for(int j = 1; j <= i; ++j){
                c[i] = 1ll * c[i] * now % mod * inv[j] % mod;
                --now;
            }
        }
    }
    int main(){
        scanf("%d%d", &n, &k);
        for(int i = 1; i <= n; ++i) scanf("%d", &a[i]);
        init();
        if(k){
            for(int i = 1; i <= n; ++i){
                for(int j = 1; j <= i; ++j){
                    b[i] = (b[i] + 1ll * a[j] * c[i-j]) % mod;
                }
            }
            for(int i = 1; i <= n; ++i)
                a[i] = b[i];
        }
        for(int i = 1; i <= n; ++i){
            printf("%d%c", a[i], " 
    "[i==n]);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    在前后端分离的SpringBoot项目中集成Shiro权限框架
    过账销售订单装箱单报错:用库存单位数量表示的实际剩余数量不能为零
    外部系统调用AX服务
    InventSum Closed and ClosedQty
    固定资产日志过账报错
    AX批处理相关
    AX2012打开报表报错
    有折扣的销售订单过账
    AX版本查询
    AX2012 SSRS Report 相关
  • 原文地址:https://www.cnblogs.com/MingSD/p/10885579.html
Copyright © 2020-2023  润新知