题解:
定义d[i]为第i个数和他对面的差值。
然后我们可以发现d[i]和d[i+1]的差值只会有3种情况2, -2, 0。
并且可以知道 d[i] = - d[i+n/2]
所以如果一开始n = 4 * k 即 d[1] 是偶数的话, 一定有d[i] = 0的情况。
如果d[l] > 0 && d[r] < 0 那么中间一定有一个d[mid] = 0.
所以我们求出1 和 1 + n/2的d值, 然后二分那段区间会有解就好了。
代码:
#include<bits/stdc++.h> using namespace std; #define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout); #define LL long long #define ULL unsigned LL #define fi first #define se second #define pb push_back #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define lch(x) tr[x].son[0] #define rch(x) tr[x].son[1] #define max3(a,b,c) max(a,max(b,c)) #define min3(a,b,c) min(a,min(b,c)) typedef pair<int,int> pll; const int inf = 0x3f3f3f3f; const int _inf = 0xc0c0c0c0; const LL INF = 0x3f3f3f3f3f3f3f3f; const LL _INF = 0xc0c0c0c0c0c0c0c0; const LL mod = (int)1e9+7; const int N = 1e5 + 100; int n; int solve(int x){ printf("? %d ? %d ", x, x + n/2); fflush(stdout); int a, b; scanf("%d%d", &a, &b); if(a == b) { printf("! %d ", x); fflush(stdout); exit(0); } a -= b; return (a > 0) - (a < 0); } int main(){ scanf("%d", &n); if(n%4){ puts("! -1"); fflush(stdout); return 0; } int l = 1, r = n/2; int lv = solve(1), rv = - lv; while(l <= r){ int m = l+r >> 1; int mv = solve(m); if(mv == lv) l = m+1; else r = m - 1; } return 0; }