• HDU-6273 Master of GCD


    Master of GCD

    Hakase has n numbers in a line. At first, they are all equal to 1. Besides, Hakase is interested in primes. She will choose a continuous subsequence [l, r] and a prime parameter x each time and for every l ≤ i ≤ r, she will change ai into ai ∗ x. To simplify the problem, x will be 2 or 3. After m operations, Hakase wants to know what is the greatest common divisor of all the numbers.

    Input

    The first line contains an integer T (1 ≤ T ≤ 10) representing the number of test cases. For each test case, the first line contains two integers n (1 ≤ n ≤ 100000) and m (1 ≤ m ≤ 100000), where n refers to the length of the whole sequence and m means there are m operations. The following m lines, each line contains three integers li (1 ≤ li ≤ n), ri (1 ≤ ri ≤ n), xi (xi ∈ {2, 3}), which are referred above.

    Output

    For each test case, print an integer in one line, representing the greatest common divisor of the sequence. Due to the answer might be very large, print the answer modulo 998244353.

     Example

    standard input standard output

    2

    5 3

    1 3 2

    3 5 2

    1 5 3                            6

    6 3 

    1 2 2

    5 6 2

    1 6 2                            2

    Explanation

    For the first test case, after all operations, the numbers will be [6, 6, 12, 6, 6]. So the greatest common divisor is 6.

    题意:t组数据,每组n,m。然后输出l,r,c(c为2或3)  l-r区间乘以c,然后求1~n的最大公约数。

    思路:如果没更新区间1~n的最大公约数是1,其实我们只需要计算1~n 2和3的都有个数,然后乘起来就是最大公约数,数据太大要用LL,然后%998244353.

    我们只需要维护一个树状数组,每次更新2,3的区间个数,然后再搞个快速幂就行。

    反思:没开LL,wa了两次。(傻逼

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll ;
    const int maxn = 100005;
    const int Mod = 998244353;
    ll sum2[maxn],sum3[maxn];
    ll lowbit(ll k)
    {
        return k&(-k);
    }
    ll quickpow(ll a,ll b)
    {
        ll ans=1;
        a=a%Mod;
        while(b!=0)
        {
            if(b&1) ans=(ans*a)%Mod;
            b>>=1;
            a=(a*a)%Mod;
        }
        return ans;
    }
    void updata(ll k,ll *a,ll c)
    {
        while(k<maxn)
        {
            a[k]+=c;
            k+=lowbit(k);
        }
    }
    ll query(ll k,ll *a)
    {
        ll ans=0;
        while(k>0)
        {
            ans+=a[k];
            k-=lowbit(k);
        }
        return ans;
    }
    int main()
    {
        ll t,n,m,l,r,c;
        scanf("%lld",&t);
        while(t--)
        {
            memset(sum2,0,sizeof(sum2));
            memset(sum3,0,sizeof(sum3));
            ll ans=0;
            scanf("%lld %lld",&n,&m);
            while(m--)
            {
                scanf("%lld %lld %lld",&l,&r,&c);
                if(c==2)
                {
                    updata(l,sum2,1);
                    updata(r+1,sum2,-1);
                }
                else
                {
                    updata(l,sum3,1);
                    updata(r+1,sum3,-1);
                }
            }
            ll min2=query(1,sum2);
            ll min3=query(1,sum3);
            for(int i=2; i<=n; i++)
            {
                min2=min(min2,query(i,sum2));
                min3=min(min3,query(i,sum3));
            }
            printf("%lld
    ",(quickpow(2,min2)*quickpow(3,min3))%Mod);
        }
    }

    PS:摸鱼怪的博客分享,欢迎感谢各路大牛的指点~

  • 相关阅读:
    UML/ROSE学习笔记系列二:UML的概念模型
    UML/ROSE学习笔记系列五:用况对过程的描述
    UML/ROSE学习笔记系列四:图
    SQLSERVER2005 的作业调度(非原创)
    ORACLE 和SQLSERVER 两表之间批量更新数据对比
    彻底领悟javascript中的exec与match方法(非原创)
    对象,对象集合的简单Xml序列化与反序列化(非原创)
    JIT是库存管理的发展趋势
    UML/ROSE学习笔记系列一:建模原理、概念
    C# 多线程与异步操作实现的探讨(非原创)
  • 原文地址:https://www.cnblogs.com/MengX/p/9084932.html
Copyright © 2020-2023  润新知