• [CF632E]Thief in a Shop


    题目大意:有一个小偷,拿$k$个东西,有$n$种产品,每种产品都有无限多个。对于每个第$i$ 种产品,它的价值是$A_i$。可能偷走的物品价值之和。

    题解:对于所有的物品构造生成函数$F(x)=sumlimits_{iin A}x^i$,取$k$个物品相当于取其中的$k$项相乘,输出$F^k(x)$中不为零的项就行了。(这道题模数$998244353$和$1004535809$都被$hack$了,看$Weng\_weijie;dalao$的题解得双模数没被卡,于是就$A$了)(这道题似乎可以用$DP$,但我不怎么会)

    卡点:

    C++ Code:

    #include <cstdio>
    #include <algorithm>
    #define maxn 1 << 20 | 3
    const int G = 3;
    int mod, ans;
    int lim, ilim, s, rev[maxn], Wn[maxn];
    inline int pw(int base, long long p) {
    	base %= mod, p %= mod - 1;
    	int ans = 1;
    	for (; p; p >>= 1, base = 1ll * base * base % mod) if (p & 1) ans = 1ll * ans * base % mod;
    	return ans;
    }
    inline int Inv(int x) {
    	return pw(x, mod - 2);
    }
    inline void up(int &a, int b) {if ((a += b) >= mod) a -= mod;}
    inline void NTT(int *A, int op) {
    	for (int i = 0; i < lim; i++) if (i < rev[i]) std::swap(A[i], A[rev[i]]);
    	for (int mid = 1; mid < lim; mid <<= 1) {
    		int t = lim / mid >> 1;
    		for (int i = 0; i < lim; i += mid << 1) {
    			for (int j = 0; j < mid; j++) {
    				int W = op ? Wn[t * j] : Wn[lim - t * j];
    				int X = A[i + j], Y = 1ll * A[i + j + mid] * W % mod;
    				up(A[i + j], Y), up(A[i + j + mid] = X, mod - Y);
    			}
    		}
    	}
    	if (!op) for (int i = 0; i < lim; i++) A[i] = 1ll * A[i] * ilim % mod;
    }
    inline void init(int n, int mod) {
    	::mod = mod;
    	lim = 1, s = -1; while (lim < n) lim <<= 1, s++; ilim = Inv(lim);
    	for (int i = 0; i < lim; i++) rev[i] = rev[i >> 1] >> 1 | (i & 1) << s;
    	int W = pw(G, (mod - 1) / lim);
    	Wn[0] = 1; for (int i = 1; i <= lim; i++) Wn[i] = 1ll * Wn[i - 1] * W % mod;
    }
    int n, k;
    int a[maxn], b[maxn];
    int main() {
    	scanf("%d%d", &n, &k);
    	for (int i = 0, tmp; i < n; i++) scanf("%d", &tmp), a[tmp] = b[tmp] = 1;
    	init(1 << 20, 998244353);
    	NTT(a, 1);
    	for (int i = 0; i < lim; i++) a[i] = pw(a[i], k);
    	NTT(a, 0);
    	init(1 << 20, 1004535809);
    	NTT(b, 1);
    	for (int i = 0; i < lim; i++) b[i] = pw(b[i], k);
    	NTT(b, 0);
    	for (int i = 0; i < lim; i++) if (a[i] | b[i]) printf("%d ", i);
    	return 0;
    }
    

      

  • 相关阅读:
    Matlab图像处理函数:regionprops
    Java的 volatile关键字的底层实现原理
    SQL学习(一.索引)
    solr7.7.0搜索引擎使用(四)(搜索语法)
    solr7.7.0搜索引擎使用(三)(添加文件索引)
    singleton单例模式小结
    多态小结
    quartz定时任务时间设置
    EditPlus编译运行java文件
    NoClassDefFoundError错误发生的原因
  • 原文地址:https://www.cnblogs.com/Memory-of-winter/p/9718254.html
Copyright © 2020-2023  润新知