题目大意:有$T(Tleqslant 3 imes 10^5)$组数据,每组数据给你$n(nleqslant 10^6)$,求$displaystylesumlimits_{i=1}^n [i,n]$($[a,b]$表示$a$和$b$的$LCM$)
题解:
$$
defdsum{displaystylesumlimits}
egin{align*}
dsum_{i=1}^n[i,n]&=dsum_{i=1}^n dfrac{icdot n}{(i,n)}\
&=ndsum_{d|n}dsum_{i|n\d|i}dfrac{i}{d}cdot[(i,n)==d](d为枚举的gcd)\
&=ndsum_{d|n}dsum_{i=1}^{frac{n}{d}}icdot[(i,dfrac{n}{d})==1](i为是d的几倍)\
end{align*}\
$$
$$
defdsum{displaystylesumlimits}
重点在如何求dsum_{i=1}^{frac{n}{d}}icdot[(i,dfrac{n}{d})==1]\
先令m=dfrac{n}{d}\
dsum_{i=1}^m i[(i,m)==1]\
也就是求dsum_{(i,m)==1}i\
发现若(d,m)==1且m
eq 1Rightarrow(m-d,m)==1\
herefore dsum_{(i,m)==1}i=
egin{cases}
&dfrac{mvarphi(m)}{2}&(m
eq 1)\
&1&(m==1)
end{cases}\
为了避免麻烦,下面令varphi(1)=2\
则dsum_{(i,m)==1}i=dfrac{mvarphi(m)}{2}\
hereforedsum_{i=1}^n[i,n]=ndsum_{d|n}dfrac{dfrac{n}{d}varphiig(dfrac{n}{d}ig)}{2}\
令f(i)=dsum_{d|i}dfrac{dfrac{i}{d}varphiig(dfrac{i}{d}ig)}{2}\
就可以O(1)求出答案了
$$
卡点:1.线性求$varphi$的时候判断条件求错
C++ Code:
#include <cstdio> #define maxn 1000010 using namespace std; int Tim, n; int phi[maxn], plist[maxn], ptot; long long f[maxn]; bool isp[maxn]; void sieve(int n) { phi[1] = 2; for (int i = 2; i < n; i++) { if (!isp[i]) plist[ptot++] = i, phi[i] = i - 1; for (int j = 0; j < ptot && i * plist[j] < n; j++) { int tmp = i * plist[j]; isp[tmp] = true; if (i % plist[j] == 0) { phi[tmp] = phi[i] * plist[j]; break; } phi[tmp] = phi[i] * phi[plist[j]]; } } for (int i= 1; i < n; i++) { long long tmp = 1ll * i * phi[i] >> 1; for (int j = i; j < n; j += i) f[j] += tmp; } } int main() { sieve(maxn); scanf("%d", &Tim); while (Tim --> 0) { scanf("%d", &n); printf("%lld ", f[n] * n); } return 0; }