题目大意:给你$n,k$,求:
$$
sumlimits_{i=0}^kinom n ipmod{2333}
$$
题解:令$p=2333,f(n,k)equivsumlimits_{i=0}^kinom n ipmod p$
$$
egin{align*}
f(n,k)equiv&sumlimits_{i=0}^kinom n ipmod p\ equiv&sumlimits_{i=0}^kinom{iglfloorfrac npig
floor}{iglfloorfrac ipig
floor}inom{nmod p}{imod p}pmod p\
end{align*}\
令s=leftlfloordfrac k p
ight
floor
$$
$$
egin{align*}
f(n,k)equiv&[sumlimits_{i=0}^{p-1}inom{nmod p}{i}][sumlimits_{i=0}^{s-1}inom{iglfloorfrac n pig
floor}{i}]\
&+inom{leftlfloorfrac np
ight
floor}{s}sumlimits_{i=sp}^kinom{nmod p}{imod p}pmod p\
equiv&[sumlimits_{i=0}^{p-1}inom{nmod p}{i}][sumlimits_{i=0}^{s-1}inom{iglfloorfrac n pig
floor}{i}]\
&+inom{leftlfloorfrac np
ight
floor}{s}sumlimits_{i=0}^{kmod p}inom{nmod p}{i}pmod p\
equiv&f(nmod p, p-1)f(leftlfloordfrac np
ight
floor,s-1)\
&+inom{iglfloorfrac npig
floor}{s}f(nmod p,kmod p)pmod p\
end{align*}
$$
卡点:未注意$n,kleqslant10^{18}$
C++ Code:
#include <cstdio> const int mod = 2333; #define maxn mod inline void reduce(int &x) { x += x >> 31 & mod; } int Tim; long long n, k; int com[maxn][maxn], pre[maxn][maxn]; int C(long long a, long long b) { if (a < b) return 0; if (a < mod) return com[a][b]; return com[a % mod][b % mod] * C(a / mod, b / mod) % mod; } int solve(long long n, long long k) { if (k < 0) return 0; if (n < mod && k < mod) return pre[n][k]; const long long s = k / mod; return (pre[n % mod][mod - 1] * solve(n / mod, s - 1) + pre[n % mod][k % mod] * C(n / mod, s)) % mod; } int main() { scanf("%d", &Tim); for (int i = 0; i < mod; ++i) { *com[i] = *pre[i] = 1; for (int j = 1; j <= i; ++j) { reduce(com[i][j] = com[i - 1][j] + com[i - 1][j - 1] - mod); reduce(pre[i][j] = pre[i][j - 1] + com[i][j] - mod); } for (int j = i + 1; j < mod; ++j) reduce(pre[i][j] = pre[i][j - 1] + com[i][j] - mod); } while (Tim --> 0) { scanf("%lld%lld", &n, &k); printf("%d ", solve(n, k)); } return 0; }