题目大意:给一个$n$个点的环染色,有$n$中颜色,问有多少种涂色方案是的旋转后本质不同
题解:$burnside$引理:$ans=dfrac1{|G|}sumlimits_{gin G}A_g$
对于环,有$Polya$定理:$ans=dfrac1{|G|}sumlimits_{gin G}m^{c(g)}$($m$为颜色数,在这道题中$m=n$,$c(g)$为置换$g$中循环个数)
因为是循环相同,所以$|G|=n$,当$g=left(
egin{smallmatrix}
1&2&cdots&n-k&n-k+1&cdots&n\
k+1&k+2&cdots&n&1&cdots&k
end{smallmatrix}
ight)$时,$c(g)=gcd(k,n)$
$$
egin{align*}
ans&=dfrac1{|G|}sumlimits_{gin G}m^{c(g)}\
&=dfrac1nsumlimits_{i=1}^nn^{(i,n)}\
&=dfrac1nsumlimits_{d|n}n^dsumlimits_{i=1}^n[(i,n)=d]\
&=dfrac1nsumlimits_{d|n}n^dsumlimits_{i=1}^{lfloorfrac nd
floor}[(icdot d,n)=d]\
&=dfrac1nsumlimits_{d|n}n^dsumlimits_{i=1}^{lfloorfrac nd
floor}[(i,dfrac nd)=1]\
&=dfrac1nsumlimits_{d|n}n^dvarphi(dfrac nd)
end{align*}
$$
虽然是多组询问,但是依然可以$O(sqrt n)$求$varphi$,复杂度$O(Tn^{frac34})$,当然,正确的方法是求出质因数后递归求出每个因数的$varphi$,复杂度$O(Tsqrt n)$
卡点:无
C++ Code:
#include <cstdio> const int mod = 1e9 + 7; namespace Math { inline int getphi(int x) { int res = x; for (register int i = 2; i * i <= x; ++i) if (x % i == 0) { res = res / i * (i - 1); while (x % i == 0) x /= i; } if (x > 1) res = res / x * (x - 1); return res; } inline int pw(int base, int p) { static int res; for (res = 1; p; p >>= 1, base = static_cast<long long> (base) * base % mod) if (p & 1) res = static_cast<long long> (res) * base % mod; return res; } inline int inv(int x) { return pw(x, mod - 2); } } inline void reduce(int &x) { x += x >> 31 & mod; } int Tim, n, ans; inline int get(int d) { return static_cast<long long> (Math::pw(n, d)) * Math::getphi(n / d) % mod; } int main() { scanf("%d", &Tim); while (Tim --> 0) { scanf("%d", &n); ans = 0; for (int i = 1; i * i <= n; ++i) if (n % i == 0) { reduce(ans += get(i) - mod); if (i != n / i) reduce(ans += get(n / i) - mod); } printf("%lld ", static_cast<long long> (ans) * Math::inv(n) % mod); } return 0; }