题目大意:有$n(nleqslant5 imes10^5)$个数,$m(mleqslant5 imes10^5)$个询问,每个询问问区间$[l,r]$中众数的出现次数
题解:分块,设块大小为$S$,先可以预处理出两两块之间的众数出现次数,复杂度$O(Big(dfrac n SBig)n)$。询问时先把答案设成整块内的答案,然后对两边剩下的最多$2S$个元素进行讨论。
难点在如何快速求出一个元素在区间内出现次数,先想到的是主席树,但是多了一个$log_2$,并过不去。可以把每种数出现的位置用$vector$存下来,并且对每个数存一个它在$vector$中的位置,第$i$个数的位置是$ret_i$,假设现在的答案为$ans$,正在处理左边的多余元素,处理到第$i$个,可以看这个数值的$vector$中,第$ret_i+ans$位是否小于$r$,若小于,则这个数至少出现了$ans+1$次,更新答案。右边也是类似的。
发现$ans$最多自增$2S$次,所以一次查询的复杂度是$O(2S)$的,总复杂度为$O(2Sm+Big(dfrac n SBig)n)$,当$S$略小于$sqrt n$时最优(其实是我不怎么算)
卡点:$Ynoi$当然卡常啦
C++ Code:
#include <algorithm> #include <cstdio> #include <cctype> #include <vector> namespace std { struct istream { #define M (1 << 24 | 3) char buf[M], *ch = buf - 1; inline istream() { #ifndef ONLINE_JUDGE freopen("input.txt", "r", stdin); #endif fread(buf, 1, M, stdin); } inline istream& operator >> (int &x) { while (isspace(*++ch)); for (x = *ch & 15; isdigit(*++ch); ) x = x * 10 + (*ch & 15); return *this; } #undef M } cin; struct ostream { #define M (1 << 24 | 3) char buf[M], *ch = buf - 1; int w; inline ostream& operator << (int x) { if (!x) { *++ch = '0'; return *this; } for (w = 1; w <= x; w *= 10); for (w /= 10; w; w /= 10) *++ch = (x / w) ^ 48, x %= w; return *this; } inline ostream& operator << (const char x) {*++ch = x; return *this;} inline ostream& operator << (const char *x) { while (*x) *this << *x++; return *this; } inline ~ostream() { #ifndef ONLINE_JUDGE freopen("output.txt", "w", stdout); #endif fwrite(buf, 1, ch - buf + 1, stdout); } #undef M } cout; } #define maxn 500010 const int BSZ = 610, BNUM = maxn / BSZ + 10; int cnt[maxn]; int MAX[BNUM][BNUM]; int L[maxn], R[maxn], bel[maxn]; int n, m, Bnum; int w[maxn], v[maxn]; std::vector<int> list[maxn]; int ret[maxn]; int main() { std::cin >> n >> m; for (int i = 1; i <= n; i++) { std::cin >> w[i]; v[i] = w[i]; bel[i] = (i - 1) / BSZ + 1; } const int tot = (std::sort(v + 1, v + n + 1), std::unique(v + 1, v + n + 1) - v - 1); for (int i = 1; i <= n; i++) { w[i] = std::lower_bound(v + 1, v + tot + 1, w[i]) - v; ret[i] = list[w[i]].size(); list[w[i]].push_back(i); } Bnum = bel[n]; for (int i = 1; i <= Bnum; i++) { L[i] = (i - 1) * BSZ, R[i] = L[i] + BSZ - 1; } L[1] = 1, R[Bnum] = n; for (int i = 1; i <= Bnum; i++) { __builtin_memset(cnt, 0, sizeof cnt); int Max = 0, now = i; for (int j = L[i]; j <= n; j++) { cnt[w[j]]++; Max = std::max(Max, cnt[w[j]]); if (j == R[now]) { MAX[i][now] = Max; now++; } } } int ans = 0; while (m --> 0) { int l, r; std::cin >> l >> r; l ^= ans, r ^= ans; const int lb = bel[l], rb = bel[r]; ans = 0; if (lb == rb) { for (int i = l; i <= r; i++) { const int W = w[i], sz = list[W].size(), pos = ret[i]; while (pos + ans < sz && list[W][pos + ans] <= r) ans++; } } else { if (lb + 1 < rb) ans = MAX[lb + 1][rb - 1]; for (int i = l; i <= R[lb]; i++) { const int W = w[i], sz = list[W].size(), pos = ret[i]; while (pos + ans < sz && list[W][pos + ans] <= r) ans++; } for (int i = L[rb]; i <= r; i++) { const int W = w[i], pos = ret[i]; while (pos >= ans && list[W][pos - ans] >= l) ans++; } } std::cout << ans << ' '; } return 0; }