• [洛谷P5048][Ynoi2019模拟赛]Yuno loves sqrt technology III


    题目大意:有$n(nleqslant5 imes10^5)$个数,$m(mleqslant5 imes10^5)$个询问,每个询问问区间$[l,r]$中众数的出现次数

    题解:分块,设块大小为$S$,先可以预处理出两两块之间的众数出现次数,复杂度$O(Big(dfrac n SBig)n)$。询问时先把答案设成整块内的答案,然后对两边剩下的最多$2S$个元素进行讨论。

    难点在如何快速求出一个元素在区间内出现次数,先想到的是主席树,但是多了一个$log_2$,并过不去。可以把每种数出现的位置用$vector$存下来,并且对每个数存一个它在$vector$中的位置,第$i$个数的位置是$ret_i$,假设现在的答案为$ans$,正在处理左边的多余元素,处理到第$i$个,可以看这个数值的$vector$中,第$ret_i+ans$位是否小于$r$,若小于,则这个数至少出现了$ans+1$次,更新答案。右边也是类似的。

    发现$ans$最多自增$2S$次,所以一次查询的复杂度是$O(2S)$的,总复杂度为$O(2Sm+Big(dfrac n SBig)n)$,当$S$略小于$sqrt n$时最优(其实是我不怎么算)

    卡点:$Ynoi$当然卡常啦

    C++ Code:

    #include <algorithm>
    #include <cstdio>
    #include <cctype>
    #include <vector>
    
    namespace std {
        struct istream {
    #define M (1 << 24 | 3)
            char buf[M], *ch = buf - 1;
            inline istream() {
    #ifndef ONLINE_JUDGE
                freopen("input.txt", "r", stdin);
    #endif
                fread(buf, 1, M, stdin);
            }
            inline istream& operator >> (int &x) {
                while (isspace(*++ch));
                for (x = *ch & 15; isdigit(*++ch); ) x = x * 10 + (*ch & 15);
                return *this;
            }
    #undef M
        } cin;
        struct ostream {
    #define M (1 << 24 | 3)
            char buf[M], *ch = buf - 1;
            int w;
            inline ostream& operator << (int x) {
                if (!x) {
                    *++ch = '0';
                    return *this;
                }
                for (w = 1; w <= x; w *= 10);
                for (w /= 10; w; w /= 10) *++ch = (x / w) ^ 48, x %= w;
                return *this;
            }
            inline ostream& operator << (const char x) {*++ch = x; return *this;}
            inline ostream& operator << (const char *x) {
                while (*x) *this << *x++;
                return *this;
            }
            inline ~ostream() {
    #ifndef ONLINE_JUDGE
                freopen("output.txt", "w", stdout);
    #endif
                fwrite(buf, 1, ch - buf + 1, stdout);
            }
    #undef M
        } cout;
    }
    
    #define maxn 500010
    const int BSZ = 610, BNUM = maxn / BSZ + 10;
    
    int cnt[maxn];
    int MAX[BNUM][BNUM];
    int L[maxn], R[maxn], bel[maxn];
    
    int n, m, Bnum;
    int w[maxn], v[maxn];
    
    std::vector<int> list[maxn];
    int ret[maxn];
    int main() {
    	std::cin >> n >> m;
    	for (int i = 1; i <= n; i++) {
    		std::cin >> w[i];
    		v[i] = w[i];
    		bel[i] = (i - 1) / BSZ + 1;
    	}
    
    	const int tot = (std::sort(v + 1, v + n + 1), std::unique(v + 1, v + n + 1) - v - 1);
    	for (int i = 1; i <= n; i++) {
    		w[i] = std::lower_bound(v + 1, v + tot + 1, w[i]) - v;
    		ret[i] = list[w[i]].size();
    		list[w[i]].push_back(i);
    	}
    
    	Bnum = bel[n];
    	for (int i = 1; i <= Bnum; i++) {
    		L[i] = (i - 1) * BSZ, R[i] = L[i] + BSZ - 1;
    	}
    	L[1] = 1, R[Bnum] = n;
    	for (int i = 1; i <= Bnum; i++) {
    		__builtin_memset(cnt, 0, sizeof cnt);
    		int Max = 0, now = i;
    		for (int j = L[i]; j <= n; j++) {
    			cnt[w[j]]++;
    			Max = std::max(Max, cnt[w[j]]);
    			if (j == R[now]) {
    				MAX[i][now] = Max;
    				now++;
    			}
    		}
    	}
    
    	int ans = 0;
    	while (m --> 0) {
    		int l, r;
    		std::cin >> l >> r;
    		l ^= ans, r ^= ans;
    		const int lb = bel[l], rb = bel[r];
    		ans = 0;
    		if (lb == rb) {
    			for (int i = l; i <= r; i++) {
    				const int W = w[i], sz = list[W].size(), pos = ret[i];
    				while (pos + ans < sz && list[W][pos + ans] <= r) ans++;
    			}
    		} else {
    			if (lb + 1 < rb) ans = MAX[lb + 1][rb - 1];
    			for (int i = l; i <= R[lb]; i++) {
    				const int W = w[i], sz = list[W].size(), pos = ret[i];
    				while (pos + ans < sz && list[W][pos + ans] <= r) ans++;
    			}
    			for (int i = L[rb]; i <= r; i++) {
    				const int W = w[i], pos = ret[i];
    				while (pos >= ans && list[W][pos - ans] >= l) ans++;
    			}
    		}
    		std::cout << ans << '
    ';
    	}
    	return 0;
    }
    

      

  • 相关阅读:
    微信报错 config:fail.Error:invalid signature
    js动态添加onload、onresize、onscroll事件(另类方法)
    Jquery 读取表单选中值
    Jquery事件
    Jquery
    PHP-query 的用法
    php-数据库访问--数据修改
    php-数据库访问--增、删、改
    php-访问数据库
    php-设计模式
  • 原文地址:https://www.cnblogs.com/Memory-of-winter/p/10126812.html
Copyright © 2020-2023  润新知