对于共线凸包,暂时没有找到一种比较好的实现方法。
本题对于共线是直接O(n^2)的方法直接刷一遍的,判断点在凸包边上的个数是否<3则NO,否则YES
要注意到,对于一条直线,要特判。(不过按理说庄园怎么能够是一条直线呢?)
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #include <cmath> #include <vector> #include <utility> #include <stack> #include <queue> #include <map> #include <deque> #define max(x,y) ((x)>(y)?(x):(y)) #define min(x,y) ((x)<(y)?(x):(y)) #define INF 0x3f3f3f3f #define MAXN 2005 using namespace std; const double eps = 1e-8; const double PI = acos(-1.0); int sgn(double x) { if(fabs(x) < eps) return 0; if(x < 0) return -1; return 1; } struct Point { double x,y; Point(){} Point(double _x, double _y): x(_x),y(_y) {} Point operator -(const Point &B) const { return Point(x-B.x, y-B.y); } Point operator +(const Point &B) const //向量相加 { return Point(x+B.x, y+B.y); } double operator ^(const Point &B) const //叉积 { return x*B.y - y*B.x; } double operator *(const Point &B) const //点积 { return x*B.x + y*B.y; } bool operator ==(const Point &B) const { return fabs(B.x-x)<eps && fabs(B.y-y)<eps; } bool operator !=(const Point &B) const { return !((*this) == B); } double norm()//向量的模 { return sqrt(x*x+y*y); } void transXY(double B) //绕原点逆时针旋转B弧度 { double tx = x, ty = y; x = tx*cos(B) - ty*sin(B); y = tx*sin(B) + ty*cos(B); } void input() //读入只能用double读入 { scanf("%lf%lf",&x,&y); } }; struct Line { Point s,e; Line(){} Line(Point _s, Point _e) { s=_s; e=_e; } }; double dist(Point a, Point b) { return sqrt((a-b)*(a-b)); } //判断点在线段上 bool OnS(Point A, Line a) { return sgn((a.s-A)^(a.e-A)) == 0 && sgn((A.x-a.s.x)*(A.x-a.e.x)) <= 0 && sgn((A.y-a.s.y)*(A.y-a.e.y)) <= 0; } //求凸包 Graham算法 //点的编号0~n-1 //返回凸包结果Stack[0~top-1]为凸包的编号 //一个点或两个点 则凸包为一或二个点 int Stack[MAXN],top; Point vertex[MAXN]; bool Graham_cmp(Point A, Point B) { double tmp=(A-vertex[0])^(B-vertex[0]); if(sgn(tmp) > 0) return 1; if(sgn(tmp) == 0 && sgn(dist(A,vertex[0])-dist(B,vertex[0])) <= 0) return 1; return 0; } void Graham(int n) { int k=0; for(int i=1; i<n; i++) if((vertex[k].y>vertex[i].y) || (vertex[k].y==vertex[i].y && vertex[k].x>vertex[i].x)) k=i; swap(vertex[0], vertex[k]); sort(vertex+1, vertex+n, Graham_cmp); if(n == 1) { top=1; Stack[0]=0; return; } if(n == 2) { top=2; Stack[0]=0; Stack[1]=1; return; } Stack[0]=0; Stack[1]=1; top=2; for(int i=2; i<n; i++) { while(top > 1 && sgn((vertex[Stack[top-1]]-vertex[Stack[top-2]])^(vertex[i]-vertex[Stack[top-2]])) <= 0) top--; Stack[top++]=i; } } int main() { int tt,n; scanf("%d",&tt); while(tt--) { scanf("%d",&n); for(int i=0; i<n; i++) vertex[i].input(); Graham(n); bool flag=1; for(int i=0; i<top; i++) { int num=0; for(int j=0; j<n; j++) if(OnS(vertex[j],Line(vertex[Stack[i]],vertex[Stack[(i+1)%top]]))) num++; if(num<3) { flag=0; break; } } if(flag && top>=3) printf("YES "); else printf("NO "); } return 0; }
加个 水平序凸包:
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #include <cmath> #include <vector> #include <utility> #include <stack> #include <queue> #include <map> #include <deque> #define max(x,y) ((x)>(y)?(x):(y)) #define min(x,y) ((x)<(y)?(x):(y)) #define INF 0x3f3f3f3f #define MAXN 2005 using namespace std; const double eps = 1e-8; const double PI = acos(-1.0); int sgn(double x) { if(fabs(x) < eps) return 0; if(x < 0) return -1; return 1; } struct Point { double x,y; Point(){} Point(double _x, double _y): x(_x),y(_y) {} Point operator -(const Point &B) const { return Point(x-B.x, y-B.y); } Point operator +(const Point &B) const //向量相加 { return Point(x+B.x, y+B.y); } double operator ^(const Point &B) const //叉积 { return x*B.y - y*B.x; } double operator *(const Point &B) const //点积 { return x*B.x + y*B.y; } bool operator ==(const Point &B) const { return fabs(B.x-x)<eps && fabs(B.y-y)<eps; } bool operator !=(const Point &B) const { return !((*this) == B); } double norm()//向量的模 { return sqrt(x*x+y*y); } void transXY(double B) //绕原点逆时针旋转B弧度 { double tx = x, ty = y; x = tx*cos(B) - ty*sin(B); y = tx*sin(B) + ty*cos(B); } void input() //读入只能用double读入 { scanf("%lf%lf",&x,&y); } }; struct Line { Point s,e; Line(){} Line(Point _s, Point _e) { s=_s; e=_e; } }; double dist(Point a, Point b) { return sqrt((a-b)*(a-b)); } //判断点在线段上 bool OnS(Point A, Line a) { return sgn((a.s-A)^(a.e-A)) == 0 && sgn((A.x-a.s.x)*(A.x-a.e.x)) <= 0 && sgn((A.y-a.s.y)*(A.y-a.e.y)) <= 0; } //求凸包 Graham算法 //点的编号0~n-1 //返回凸包结果Stack[0~top-1]为凸包的编号 //一个点或两个点 则凸包为一或二个点 int Stack[MAXN],top; Point vertex[MAXN]; bool Graham_cmp(Point A, Point B) { return A.y<B.y || (A.y == B.y && A.x<B.x); } void Graham(int n) { sort(vertex, vertex+n, Graham_cmp); top=0; for(int i=0; i<n; i++) { while(top > 1 && sgn((vertex[Stack[top-1]]-vertex[Stack[top-2]])^(vertex[i]-vertex[Stack[top-2]])) <= 0) top--; Stack[top++]=i; } int tmp=top; for(int i=n-2; i>=0; i--) { while(top > tmp && sgn((vertex[Stack[top-1]]-vertex[Stack[top-2]])^(vertex[i]-vertex[Stack[top-2]])) <= 0) top--; Stack[top++]=i; } if(n>1) top--; } int main() { int tt,n; scanf("%d",&tt); while(tt--) { scanf("%d",&n); for(int i=0; i<n; i++) vertex[i].input(); Graham(n); bool flag=1; for(int i=0; i<top; i++) { int num=0; for(int j=0; j<n; j++) if(OnS(vertex[j],Line(vertex[Stack[i]],vertex[Stack[(i+1)%top]]))) num++; if(num<3) { flag=0; break; } } if(flag && top>=3) printf("YES "); else printf("NO "); } return 0; }