已知向量(oldsymbol{alpha}),(oldsymbol{eta},oldsymbol{gamma})满足(left|oldsymbol{alpha}
ight|=1),(left| oldsymbol{alpha}-oldsymbol{eta}
ight|=left| oldsymbol{eta}
ight|),(left(oldsymbol{alpha}-oldsymbol{gamma}
ight)left(oldsymbol{eta}-oldsymbol{gamma}
ight)=0).若对每一确定的(oldsymbol{eta}),(left| oldsymbol{gamma}
ight|)的最大值和最小值分别为(m,n),则对任意(oldsymbol{eta}),(m-n)的最小值是(underline{qquadqquad}).
解析:
如图,设$$
(oldsymbol{alpha},oldsymbol{eta},oldsymbol{gamma})=left(overrightarrow{OA},overrightarrow{OB},overrightarrow{OC}
ight).$$
由题可知(OB=AB),所以若固定(OA),则(B)的轨迹为线段(OA)的中垂线.
又(CBperp CA),所以当(oldsymbol{eta}),也即点(B)确定时,(C)点的轨迹为以(AB)为直径的圆.
![](https://img2018.cnblogs.com/blog/1793042/201911/1793042-20191116134148490-1095457004.png)
记$AB$中点为$M$,则$$m-n=2MC=AB=OB.$$因此我们可知原题等价于求$OB$的最小值,显然$OB$最小值为$dfrac12$,当且仅当$B$位于$OA$的中点取得.