• 每日一题_191102


    已知函数(f(x)=x{ln}x+dfrac{1}{2}ax^3-ax^2),(ainmathbb{R}).
    ((1))(a=0)时,求(f(x))的单调区间;
    ((2)) 若函数(g(x)=dfrac{f(x)}{x})存在两个极值点(x_1,x_2),求(g(x_1)+g(x_2))的取值范围.
    解析:
    ((1))(a=0)时,对(f(x))求导可得$$f'(x)=1+{ln}x,x>0.$$
    此时(f(x))(left(0,dfrac{1}{mathrm{e}} ight))单调递减,在(left[dfrac{1}{mathrm{e}},+infty ight))单调递增.
    ((2)) 由题$$
    g(x)={ln}x+dfrac{1}{2}ax^2-ax,x>0.$$对(g(x))求导可得$$
    g'(x)=dfrac{1}{x}+ax-a=dfrac{ax^2-ax+1}{x},x>0.$$
    若要使得(g'(x))((0,+infty))有两个变号零点,需且仅需(g'left(dfrac{1}{2} ight)<0),即(a>4).根据韦达定理可得$$
    x_1+x_2=dfrac{1}{2},x_1x_2=dfrac{1}{a}.$$
    所以$$
    egin{split}
    &g(x_1)+g(x_2)
    =&{ln}(x_1x_2)+dfrac{1}{2}acdotleft(x_12+x_22 ight)-aleft(x_1+x_2 ight)
    =&{ln}(x_1x_2)+dfrac{1}{2}acdotleft[left(x_1+x_2 ight)^2-2x_1x_2 ight]-aleft(x_1+x_2 ight)
    =&-{ln}a+dfrac{1}{2}acdotleft(dfrac{1}{4}-dfrac{2}{a} ight)-dfrac{a}{2}
    =&-{ln}a-dfrac{3}{8}a-1.
    end{split}$$
    显然,上述表达式是关于(a)的单调递减函数,其中(a>4).因此所求表达式的取值范围为(left(-infty,-2{ln}2-dfrac{5}{2} ight)).

  • 相关阅读:
    core文件生成总结
    php 5.2 版本isset()方法小坑
    gdb调试memcached
    mysql的sql优化案例
    php对mongo操作问题
    memcache锁
    php的session实现
    linux指令tips
    php拦截器(魔术方法)
    Nginx源码研究八:nginx监听socket实现流程
  • 原文地址:https://www.cnblogs.com/Math521/p/11785963.html
Copyright © 2020-2023  润新知