• 【bzoj3295】 Cqoi2011—动态逆序对


    http://www.lydsy.com/JudgeOnline/problem.php?id=3295 (题目链接)

    题意

      给出某种排列,按照某种顺序依次删除m个数,在每次删除一个数前统计序列中逆序对对个数。

    Solution

      作为一个CDQ分治的初学者,我毫不犹豫的%了LCF的题解。

      这里介绍下三维偏序的求法:一维排序,二维归并,三维树状数组。

      排序维护x维之后,递归处理:

        1.在处理区间[L,R]的时候,先二分区间[L, (L+R)/ 2],递归求这个左区间(二分的原因是我在维护y维的时候难免破坏x维的性质,但是二分之后我还是可以保证左区间的x全都大于右区间的x)。

        2.这个时候左区间y维已经有序,我们只好把右区间[(L+R)/2,R],快排一遍,进行归并式的dp转移(左区间一个指针,右区间一个指针,保证左区间指针所扫过的y一定小于右区间指针所扫过的y),然后在用常规的树状数组维护z。

        3.当然,最后还应该把右区间[(L+R)/2,R]按x快排回去,并递归处理这一段。

        4.最后归并或者快排维护整个区间的y有序。

      像这种题目,经常把时间作为第三维做三维偏序。

    细节

      ?

    代码

    // bzoj3295
    #include<algorithm>
    #include<iostream>
    #include<cstdlib>
    #include<cstring>
    #include<cstdio>
    #include<cmath>
    #define LL long long
    #define inf (1ll<<60)
    #define Pi acos(-1.0)
    #define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout)
    using namespace std;
    
    const int maxn=100010;
    int c[maxn],f[maxn],pos[maxn],n,m;
    struct data {int x,y,z;}a[maxn],t[maxn];
    
    bool cmp(data a,data b) {
    	return a.z<b.z;
    }
    int lowbit(int x) {
    	return x&-x;
    }
    void add(int x,int val) {
    	for (int i=x;i<=n;i+=lowbit(i)) c[i]+=val;
    }
    LL query(int x) {
    	int res=0;
    	for (int i=x;i;i-=lowbit(i)) res+=c[i];
    	return res;
    }
    void solve(int l,int r) {
    	if (l==r) return;
    	int mid=(l+r)>>1;
    	solve(l,mid);solve(mid+1,r);
    	for (int i=l,j=mid+1,k=l;i<=mid || j<=r;) {
    		if ((j<=r && a[j].x<a[i].x) || i>mid) add(a[j].y,1),t[k++]=a[j++];
    		else f[a[i].z]+=query(n)-query(a[i].y),t[k++]=a[i++];
    	}
    	for (int i=mid+1;i<=r;i++) add(a[i].y,-1);
    	for (int i=mid,j=r;i>=l || j>=mid+1;) {
    		if ((j>=mid+1 && a[j].x>a[i].x) || i<l) add(a[j].y,1),j--;
    		else f[a[i].z]+=query(a[i].y-1),i--;
    	}
    	for (int i=mid+1;i<=r;i++) add(a[i].y,-1);
    	for (int i=l;i<=r;i++) a[i]=t[i];
    }
    int main() {
    	scanf("%d%d",&n,&m);
    	for (int x,i=1;i<=n;i++) scanf("%d",&x),pos[x]=i;
    	for (int x,i=1;i<=m;i++) scanf("%d",&x),a[pos[x]]=(data){x,pos[x],i};
    	for (int x=m,i=1;i<=n;i++) if (!a[pos[i]].z) a[pos[i]]=(data){i,pos[i],++x};
    	sort(a+1,a+1+n,cmp);
    	solve(1,n);
    	LL ans=0;
    	for (int i=1;i<=n;i++) ans+=f[i];
    	for (int i=1;i<=m;i++) printf("%lld
    ",ans),ans-=f[i];
    	return 0;
    }
    
  • 相关阅读:
    Python单例模式中的4种方式
    Python list,tuple,dict,set高级变量常用方法
    python如何获取多个excel单元格的值
    两种方法实现python操作日志的封装
    numpy中函数shape的用法
    python中timer定时器常用的两种实现方法
    详解Python中argpasrse模块的基本使用
    在python中列表删除和多重循环退出
    Python的驻留机制(仅对数字,字母,下划线有效)
    python实现tail -f 功能
  • 原文地址:https://www.cnblogs.com/MashiroSky/p/6001078.html
Copyright © 2020-2023  润新知