• 【bzoj4241】 历史研究


    http://www.lydsy.com/JudgeOnline/problem.php?id=4241 (题目链接)

      看到题目就联想到了【bzoj2809】 Apio2012—dispatching。想了想权值分块+莫队,发现不好维护块内最值,又看了看80s的时间,于是怒水一发线段树+莫队,结果先WA后TLE,不断TLE,无论怎么改常数都不行,难道nlogn*sqrt(n)就是过不了吗!!不爽,蒯个题解,再见!

    题意

      求区间加权众数。

    solution

      貌似是分块,离散化之后,用mx[i][j]表示第i块到第j块的答案,cnt[i][j]表示前i块数字j的个数。

    代码

    // bzoj4241
    #include<algorithm>
    #include<iostream>
    #include<cstdlib>
    #include<cstring>
    #include<cstdio>
    #include<cmath>
    #define LL long long
    #define inf 2147483640
    #define Pi acos(-1.0)
    #define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
    using namespace std;
    inline LL getint() {
        int f,x=0;char ch=getchar();
        while (ch<='0' || ch>'9') {if (ch=='-') f=-1;else f=1;ch=getchar();}
        while (ch>='0' && ch<='9') {x=x*10+ch-'0';ch=getchar();}
        return x*f;
    }
    
    const int maxn=100010;
    struct data {int w,id;}a[maxn];
    int b[maxn],pos[maxn],L[400],R[400],cnt[400][maxn],num[maxn],st[maxn];
    LL mx[400][400],ans;
    int n,m,block,tot,top;
    
    bool cmp(data a,data b) {
        return a.w<b.w;
    }
    LL cal(int l,int r) {
        LL ans=0;
        top=0;
        for (int i=l;i<=r;i++) {
            if (!num[b[i]]) st[++top]=b[i];
            num[b[i]]++;
            ans=max(ans,(LL)num[b[i]]*a[b[i]].w);
        }
        while (top) num[st[top--]]=0;
        return ans;
    }    
    void build() {
        block=sqrt(n);tot=(n-1)/block+1;
        for (int i=1;i<=n;i++) {
            pos[i]=(i-1)/block+1;
            if (!L[pos[i]]) L[pos[i]]=i;
            R[pos[i]]=i;
        }
        for (int i=1;i<=n;i++) cnt[pos[i]][b[i]]++;
        for (int i=2;i<=tot;i++)
            for (int j=1;j<=n;j++) cnt[i][j]+=cnt[i-1][j];
    }
    int main() {
        scanf("%d%d",&n,&m);
        for (int i=1;i<=n;i++) scanf("%d",&a[i].w),a[i].id=i;
        sort(a+1,a+1+n,cmp);
        b[a[1].id]=1;
        for (int i=2;i<=n;i++) {
            if (a[i].w==a[i-1].w) b[a[i].id]=b[a[i-1].id];
            else b[a[i].id]=i;
        }
        build();
        for (int i=1;i<=tot;i++) {
            LL ans=0;
            memset(num,0,sizeof(num));
            for (int j=L[i];j<=n;j++) {
                num[b[j]]++;
                ans=max(ans,(LL)num[b[j]]*a[b[j]].w);
                if (j==R[pos[j]]) mx[i][pos[j]]=ans;
            }
        }
        memset(num,0,sizeof(num));
        for (int i=1;i<=m;i++) {
            int l,r;
            scanf("%d%d",&l,&r);
            ans=0;
            if (pos[l]==pos[r]) printf("%lld
    ",cal(l,r));
            else {
                ans=mx[pos[l]+1][pos[r]-1];
                top=0;
                for (int i=l;i<=R[pos[l]];i++)
                    if (!num[b[i]]) st[++top]=b[i],num[b[i]]=cnt[pos[r]-1][b[i]]-cnt[pos[l]][b[i]];
                for (int i=L[pos[r]];i<=r;i++)
                    if (!num[b[i]]) st[++top]=b[i],num[b[i]]=cnt[pos[r]-1][b[i]]-cnt[pos[l]][b[i]];
                for (int i=l;i<=R[pos[l]];i++) num[b[i]]++;
                for (int i=L[pos[r]];i<=r;i++) num[b[i]]++;
                while (top) {
                    ans=max(ans,(LL)a[st[top]].w*num[st[top]]);
                    num[st[top--]]=0;
                }
                printf("%lld
    ",ans);
            }
        }
        return 0;
    }
    

      

  • 相关阅读:
    springmvc跨域+token验证(app后台框架搭建二)
    JSON Web Tokens(JWT)
    spring4+springmvc+mybatis基本框架(app后台框架搭建一)
    [原创] zabbix学习之旅一:源码安装
    ROC 曲线和 AUC 值
    win7 64位系统 Oracle32bit + PL/SQL访问Orale服务,Oracle 11g的安装,中文乱码问题的解决
    CentOS系统安装配置mysql
    Loaded plugins: fastestmirror, refresh-packagekit, security
    求LCA最近公共祖先的离线Tarjan算法_C++
    求LCA最近公共祖先的在线ST算法_C++
  • 原文地址:https://www.cnblogs.com/MashiroSky/p/5914625.html
Copyright © 2020-2023  润新知