• 用Pytorch训练MNIST分类模型


    本次分类问题使用的数据集是MNIST,每个图像的大小为(28*28)

    编写代码的步骤如下

    1. 载入数据集,分别为训练集和测试集
    2. 让数据集可以迭代
    3. 定义模型,定义损失函数,训练模型
    代码
    import torch
    import torch.nn as nn
    import torchvision.transforms as transforms
    import torchvision.datasets as dsets
    from torch.autograd import Variable
    
    '''下载训练集和测试集'''
    train_dataset = dsets.MNIST(root='./datasets',
                                train=True, 
                                transform=transforms.ToTensor(),
                                download=True)
    
    test_dataset = dsets.MNIST(root='./datasets',
                               train=False, 
                               transform=transforms.ToTensor())
    
    
    '''让数据集可以迭代'''
    batch_size = 100
    n_iters = 3000
    num_epochs = n_iters / (len(train_dataset) / batch_size)
    num_epochs = int(num_epochs)
    
    train_loader = torch.utils.data.DataLoader(dataset=train_dataset, 
                                               batch_size=batch_size, 
                                               shuffle=True)
    
    test_loader = torch.utils.data.DataLoader(dataset=test_dataset, 
                                              batch_size=batch_size, 
                                              shuffle=False)
    
    '''定义模型'''
    class LogisticRegressionModel(nn.Module):
        def __init__(self, input_dim, output_dim):
            super(LogisticRegressionModel, self).__init__()
            self.linear = nn.Linear(input_dim, output_dim)
        
        def forward(self, x):
            out = self.linear(x)
            return out
    
    '''实例化模型'''
    input_dim = 28*28
    output_dim = 10
    
    model = LogisticRegressionModel(input_dim, output_dim)
    
    '''定义损失计算方式'''
    criterion = nn.CrossEntropyLoss()
    
    
    learning_rate = 0.001
    
    optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
    
    '''训练次数'''
    iter = 0
    for epoch in range(num_epochs):
        for i, (images, labels) in enumerate(train_loader):
    
            images = Variable(images.view(-1, 28*28))
            labels = Variable(labels)
            
            #梯度置零
            optimizer.zero_grad()
            
            #计算输出
            outputs = model(images)
            
            #计算损失,内部会自动softmax然后进行Crossentropy
            loss = criterion(outputs, labels)
            
            #反向传播
            loss.backward()
            
            #更新参数
            optimizer.step()
            
            iter += 1
            
            if iter % 500 == 0:
                #计算准确度
                correct = 0
                total = 0
                for images, labels in test_loader:
                    images = Variable(images.view(-1, 28*28))
                    
                    #获得输出,输出的大小为(batch_size,10)
                    outputs = model(images)
                    
                    #获得预测值,输出的大小为(batch_size,1)
                    _, predicted = torch.max(outputs.data, 1)
                    
                    #labels的size是(100,)
                    total += labels.size(0)
    
                    #返回的是预测值和标签值相等的个数
                    correct += (predicted == labels).sum()
                
                accuracy = 100 * correct / total
                
                # Print Loss
                print('Iteration: {}. Loss: {}. Accuracy: {}'.format(iter, loss.data[0], accuracy))
    
    输出如下

  • 相关阅读:
    ret向外层返回
    8259A编程
    printf输出格式
    orange's习题——分页机制【第3章】
    关于“数据段向低扩展”——遇到一篇很佩服的帖子
    揭开硬件中断请求IRQ所有秘密(图解)
    虚拟地址空间达64TB是怎么算来的
    orange's习题——分段机制【第3章】
    进入内层时的堆栈切换
    枚举
  • 原文地址:https://www.cnblogs.com/MartinLwx/p/10354889.html
Copyright © 2020-2023  润新知