• 2015-第六届蓝桥杯大赛个人赛省赛(软件类)真题 C大学C组


    返回目录

    题目一览:

    1.隔行变色

    2.立方尾不变

    3.三羊献瑞

    4.格子中输出

    5.串逐位和

    6.奇妙的数字

    7.加法变乘法

    8.饮料换购

    9.打印大X

    10.垒骰子

    1.隔行变色

    Excel表的格子很多,为了避免把某行的数据和相邻行混淆,可以采用隔行变色的样式。
    小明设计的样式为:第1行蓝色,第2行白色,第3行蓝色,第4行白色,....
    现在小明想知道,从第21行到第50行一共包含了多少个蓝色的行。

    请你直接提交这个整数,千万不要填写任何多余的内容。

    思路:很简单的题,由题可知奇数行是蓝色,那么答案就是(50-21+1)/2。

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 
     4 int main() {
     5     int cnt = 0;
     6     for(int i=21; i<=50; ++i)
     7         if(i%2) cnt++;
     8     cout << cnt; 
     9     return 0;
    10 }
    1.隔行变色

    答案:15

    2.立方尾不变

    有些数字的立方的末尾正好是该数字本身。
    比如:1,4,5,6,9,24,25,....

    请你计算一下,在10000以内的数字中(指该数字,并非它立方后的数值),符合这个特征的正整数一共有多少个。

    请提交该整数,不要填写任何多余的内容。

    思路:把立方求出来,然后每次取最后一位进行判断即可。

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 
     4 typedef long long LL;
     5 
     6 bool check(LL x) {
     7     LL res = x * x * x;
     8     while(x) {
     9         if((x%10) != (res%10)) return false;
    10         x /= 10, res /= 10;
    11     }
    12     return true;
    13 } 
    14 
    15 int main() {
    16     int cnt = 0;
    17     for(LL i=1; i<=10000; ++i)
    18         if(check(i)) cnt++;
    19     cout << cnt << endl;
    20     return 0;
    21 }
    2.立方尾不变

    答案:36

    3.三羊献瑞

    观察下面的加法算式:

    祥 瑞 生 辉
    + 三 羊 献 瑞
    -------------------
    三 羊 生 瑞 气

    (如果有对齐问题,可以参看【图1.jpg】)

    其中,相同的汉字代表相同的数字,不同的汉字代表不同的数字。

    请你填写“三羊献瑞”所代表的4位数字(答案唯一),不要填写任何多余内容。

    思路:按顺序用字母代替就变成了abcd+efgb=efcbh,那就想到用枚举,一共8个未知数,那么我们需要7层循环,显然有些麻烦。那么我们简单推导一下,两个四位数相加得到一个五位数,那么第一位e是1,又因为有了进位,所以a是9,那么f就是0.所以算式变成了bcd+gb=cbh,又因b'变成了c,所以c=b+1,再根据c+g+x(x为0或1,代表个位的进位)进1得b,推算出g=9-x,又因b是9,的d+b>=10, g为8。然后可简化成d+b=1h。这时就好枚举了。具体过程看下图。最后输出efgb即可。

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 
     4 int main() {
     5     // 此时数字只剩下2 3 4 5 6 7
     6     // 因c=b+1 故b不能为7 
     7     for(int b=2; b<=6; ++b) {
     8         for(int d=2; d<=7; ++d) {
     9             if(d == b) continue; //不能相同 
    10             if(d == b+1) continue; // c=b+1
    11             if(b+d <= 10) continue; //要大于10,h不能是0
    12             int h = b + d - 10;
    13             if(h==b || h==d || h==b+1) continue; 
    14             if(h==1 || h==8 || h==9) continue;
    15             //printf("b=%d d=%d h=%d
    ", b, d, h);
    16             printf("%d%d%d%d", 1, 0, 8, b);
    17         } 
    18     } 
    19     return 0;
    20 }
    3.三羊献瑞

    答案:1085

    4.格子中输出

    StringInGrid函数会在一个指定大小的格子中打印指定的字符串。
    要求字符串在水平、垂直两个方向上都居中。
    如果字符串太长,就截断。
    如果不能恰好居中,可以稍稍偏左或者偏上一点。

    下面的程序实现这个逻辑,请填写划线部分缺少的代码。

     1 #include <stdio.h>
     2 #include <string.h>
     3 void StringInGrid(int width, int height, const char* s) {
     4     int i,k;
     5     char buf[1000];
     6     strcpy(buf, s);
     7     if(strlen(s)>width-2) buf[width-2]=0;
     8     
     9     printf("+");
    10     for(i=0;i<width-2;i++) printf("-");
    11     printf("+
    ");
    12     
    13     for(k=1; k<(height-1)/2;k++){
    14         printf("|");
    15         for(i=0;i<width-2;i++) printf(" ");
    16         printf("|
    ");
    17     }
    18     
    19     printf("|");
    20     
    21     printf("%*s%s%*s",____________); //填空
    22     
    23     printf("|
    ");
    24     
    25     for(k=(height-1)/2+1; k<height-1; k++){
    26         printf("|");
    27         for(i=0;i<width-2;i++) printf(" ");
    28         printf("|
    ");
    29     }    
    30     
    31     printf("+");
    32     for(i=0;i<width-2;i++) printf("-");
    33     printf("+
    ");    
    34 }
    35     
    36 int main() {
    37     StringInGrid(20,6,"abcd1234");
    38     return 0;
    39 }

    对于题目中数据,应该输出:

    +------------------+
    | |
    | abcd1234 |
    | |
    | |
    +------------------+
     (如果出现对齐问题,参看【图1.jpg】)

    注意:只填写缺少的内容,不要书写任何题面已有代码或说明性文字。

    思路:这里先介绍一下*修饰符。在scanf里面,*是起到过滤读入的作用,比如说有3个数,而你只想读入第2个数,那么可以写scanf("%*d%d%*d", &a)来实现如下图

     但是*到了printf里面就不一样了,printf("%3d", a);大家应该都知道这是设置宽域的,同理,%3s也是宽域。假设我们需要动态的设置宽域怎么办呢。这时候就需要*修饰符了,printf("%*s", 3,"ab");大伙应该有点想法了吧。就是把"ab"放入宽域为3的空间中右对齐。那么这道题就很简单了。

    答案:

    (width-2-strlen(buf))/2,"", buf, (width-1-strlen(buf))/2,""

    5.串逐位和

    串逐位和

    给定一个由数字组成的字符串,我们希望得到它的各个数位的和。
    比如:“368” 的诸位和是:17
    这本来很容易,但为了充分发挥计算机多核的优势,小明设计了如下的方案:

     1 int f(char s[], int begin, int end) {
     2     int mid;
     3     if(end-begin==1) return s[begin] - '0';
     4     mid = (end+begin) / 2;
     5     return ____________________________________;  //填空
     6 }
     7     
     8 int main() {
     9     char s[] = "4725873285783245723";
    10     printf("%d
    ",f(s,0,strlen(s)));
    11     return 0;
    12 }

    你能读懂他的思路吗? 请填写划线部分缺失的代码。

    注意:只填写缺少的部分,不要填写已有代码或任何多余内容。

    思路:一看到他求了mid,就想到了分治,然后答案就很快出来了。

    答案:

    f(s, begin, mid)+f(s, mid, end)

    6.奇妙的数字

    小明发现了一个奇妙的数字。它的平方和立方正好把0~9的10个数字每个用且只用了一次。
    你能猜出这个数字是多少吗?

    请填写该数字,不要填写任何多余的内容。

    思路:枚举判断。

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 
     4 int Ans = 0, cnt;
     5 bool vis[11];
     6 
     7 bool check() {
     8     if(cnt != 10) return false;
     9     for(int i=0; i<10; ++i) 
    10         if(vis[i] == false) return false;
    11     return true; 
    12 }
    13 
    14 void work(int val) {
    15     int x = val * val;
    16     while(x) {
    17         vis[x%10] = true;
    18         cnt ++;
    19         x /= 10;
    20     }
    21     x = val * val * val;
    22     while(x) {
    23         vis[x%10] = true;
    24         cnt ++;
    25         x /= 10;
    26     }
    27 }
    28 
    29 int main() {
    30     while(++Ans) {
    31         cnt = 0;
    32         for(int i=0; i<10; ++i) vis[i] = false;
    33         work(Ans);
    34         if(check()) break;
    35     }
    36     cout << Ans << endl;
    37     return 0;
    38 }
    6.奇妙的数字

    答案:69

    7.加法变乘法

    我们都知道:1+2+3+ ... + 49 = 1225
    现在要求你把其中两个不相邻的加号变成乘号,使得结果为2015

    比如:
    1+2+3+...+10*11+12+...+27*28+29+...+49 = 2015
    就是符合要求的答案。

    请你寻找另外一个可能的答案,并把位置靠前的那个乘号左边的数字提交(对于示例,就是提交10)。

    注意:需要你提交的是一个整数,不要填写任何多余的内容。

    思路:有两个乘号,两个循环枚举"*"的位置,然后进行计算就好。这里不需要从1到49计算,只需要减去乘号两边的数字,加上他两个的乘积即可。

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 
     4 int main() {
     5     for(int i=1; i<=48; ++i) {
     6         for(int j=i+1; j<=48; ++j) {
     7             if(i == j) continue;
     8             int Ans = 1225 - 2*i - 2*j - 2;
     9             Ans = Ans + i*(i+1) + j*(j+1);
    10             if(Ans == 2015) {
    11                 //printf("%d %d
    ", i, j);
    12                 printf("%d
    ", i);
    13             }
    14         }
    15     }
    16     return 0;
    17 }
    7.加法变乘法

    答案:16

    8.饮料换购

    乐羊羊饮料厂正在举办一次促销优惠活动。乐羊羊C型饮料,凭3个瓶盖可以再换一瓶C型饮料,并且可以一直循环下去(但不允许暂借或赊账)。

    请你计算一下,如果小明不浪费瓶盖,尽量地参加活动,那么,对于他初始买入的n瓶饮料,最后他一共能喝到多少瓶饮料。

    输入:一个整数n,表示开始购买的饮料数量(0<n<10000)
    输出:一个整数,表示实际得到的饮料数

    例如:
    用户输入:
    100
    程序应该输出:
    149

    用户输入:
    101
    程序应该输出:
    151


    资源约定:
    峰值内存消耗 < 256M
    CPU消耗 < 1000ms


    请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。

    所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。

    注意: main函数需要返回0
    注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
    注意: 所有依赖的函数必须明确地在源文件中 #include <xxx>, 不能通过工程设置而省略常用头文件。

    提交时,注意选择所期望的编译器类型。

    思路:一直模拟就好

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 
     4 int main() {
     5     int n, x, sum;
     6     cin >> n;
     7     sum = n; // 一开始的n瓶都能喝到 
     8     do {
     9         x = n%3;    // 换掉剩下的瓶盖
    10         n /= 3;        // 换了几瓶 
    11         sum += n;    // 喝到了新换到的
    12         n += x;        // 更新当前手里的瓶盖 
    13     }while(n>=3);
    14     cout << sum << endl;
    15     return 0;
    16 }
    8.饮料换购

    9.打印大X

    小明希望用星号拼凑,打印出一个大X,他要求能够控制笔画的宽度和整个字的高度。
    为了便于比对空格,所有的空白位置都以句点符来代替。

    要求输入两个整数m n,表示笔的宽度,X的高度。用空格分开(0<m<n, 3<n<1000, 保证n是奇数)
    要求输出一个大X

    例如,用户输入:
    3 9
    程序应该输出:
    ***.....***
    .***...***.
    ..***.***..
    ...*****...
    ....***....
    ...*****...
    ..***.***..
    .***...***.
    ***.....***

    (如有对齐问题,参看【图1.jpg】)

    再例如,用户输入:

    4 21
    程序应该输出
    ****................****
    .****..............****.
    ..****............****..
    ...****..........****...
    ....****........****....
    .....****......****.....
    ......****....****......
    .......****..****.......
    ........********........
    .........******.........
    ..........****..........
    .........******.........
    ........********........
    .......****..****.......
    ......****....****......
    .....****......****.....
    ....****........****....
    ...****..........****...
    ..****............****..
    .****..............****.
    ****................****

    (如有对齐问题,参看【图2.jpg】)

    资源约定:
    峰值内存消耗 < 256M
    CPU消耗 < 1000ms


    请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。

    所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。

    注意: main函数需要返回0
    注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
    注意: 所有依赖的函数必须明确地在源文件中 #include <xxx>, 不能通过工程设置而省略常用头文件。

    提交时,注意选择所期望的编译器类型。

    思路:很简单的一个思路,创建一个二维数组,然后全部初始化为".",然后模仿书写的笔迹来更改,第一笔从左上到右下,第二笔是右上到左下,但这样关系不好找,我们可以从左下到右上,这样是和第一笔成对称关系。其中有个关系是:每一行的个数为n+m-1。

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 
     4 int n, m;
     5 char s[2020][2020];
     6 
     7 int main() {
     8     cin >> m >> n;
     9     for(int i=1; i<=n; ++i)  // 初始化 
    10         for(int j=1; j<=n+m-1; ++j)
    11             s[i][j] = '.';
    12 
    13     for(int i=1; i<=n; ++i) { 
    14         for(int j=1; j<=m; ++j) // 左上到右下 
    15             s[i][i+j-1] = '*';
    16         for(int j=1; j<=m; ++j) // 左下到右上 
    17             s[n-i+1][i+j-1] = '*';
    18     }
    19     for(int i=1; i<=n; ++i) { // 输出 
    20         for(int j=1; j<=n+m-1; ++j)
    21             printf("%c", s[i][j]);
    22         puts("");
    23     }
    24     return 0;
    25 }
    9.打印大X

    10.垒骰子

    赌圣atm晚年迷恋上了垒骰子,就是把骰子一个垒在另一个上边,不能歪歪扭扭,要垒成方柱体。
    经过长期观察,atm 发现了稳定骰子的奥秘:有些数字的面贴着会互相排斥!
    我们先来规范一下骰子:1 的对面是 4,2 的对面是 5,3 的对面是 6。
    假设有 m 组互斥现象,每组中的那两个数字的面紧贴在一起,骰子就不能稳定的垒起来。
    atm想计算一下有多少种不同的可能的垒骰子方式。
    两种垒骰子方式相同,当且仅当这两种方式中对应高度的骰子的对应数字的朝向都相同。
    由于方案数可能过多,请输出模 10^9 + 7 的结果。

    不要小看了 atm 的骰子数量哦~

    「输入格式」
    第一行两个整数 n m
    n表示骰子数目
    接下来 m 行,每行两个整数 a b ,表示 a 和 b 数字不能紧贴在一起。

    「输出格式」
    一行一个数,表示答案模 10^9 + 7 的结果。

    「样例输入」
    2 1
    1 2

    「样例输出」
    544

    「数据范围」
    对于 30% 的数据:n <= 5
    对于 60% 的数据:n <= 100
    对于 100% 的数据:0 < n <= 10^9, m <= 36


    资源约定:
    峰值内存消耗 < 256M
    CPU消耗 < 2000ms


    请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。

    所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。

    注意: main函数需要返回0
    注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
    注意: 所有依赖的函数必须明确地在源文件中 #include <xxx>, 不能通过工程设置而省略常用头文件。

    提交时,注意选择所期望的编译器类型。

    思路:首先一个骰子的某一个面朝上时,他是有四种状态的,因为可以旋转,所以n层的话有4^n种,我们可以先把侧面当成一样的,最后再乘上去。我们考虑用动态规划来做:f[i][j]表示第i层时,顶面点数为j的的方案数,那么f[i][j]就等于第i-1层中所有不与j相斥的方案数累加。又考虑到n<=10^9,且第i层只与第i-1层有关,因此我们可以使用滚动数组。

    该方法最后几个点超时

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 typedef long long LL;
     4 const LL Mod = 1e9 + 7;
     5 
     6 int n, m, pos = 0;
     7 LL res, f[2][7], Ans;
     8 bool vis[7][7];
     9 int oppo[7] = {0, 4, 5, 6, 1, 2, 3}; //对应面 
    10 
    11 LL ksm(LL a, LL b) {
    12     LL re = 1;
    13     while(b) {
    14         if(b&1) re = re * a % Mod;
    15         a = a * a % Mod;
    16         b >>= 1;
    17     }
    18     return re%Mod;
    19 }
    20 
    21 int main() {
    22     cin >> n >> m;
    23     memset(vis, true, sizeof(vis));
    24     for(int i=1; i<=m; ++i) {
    25         int x, y;
    26         scanf("%d%d", &x, &y);
    27         vis[x][y] = vis[y][x] = false;
    28     }
    29     for(int i=1; i<=6; ++i) // 边界条件 第一层每面向上为1 
    30         f[pos][i] = 1;
    31     for(LL i=2; i<=n; ++i) { // 枚举2-n层 
    32         pos = 1 - pos; //滚动 0 1交替 
    33         for(int j=1; j<=6; ++j) { // 点数为j的向上 
    34             f[pos][j] = 0; // 滚动回来先清零
    35             for(int k=1; k<=6; ++k) // i-1层的顶面 
    36                 if(vis[oppo[j]][k]) // 点数j的对应面能否不相斥 
    37                     f[pos][j] += f[1-pos][k]; 
    38             f[pos][j] %= Mod;
    39         }
    40     } 
    41     
    42     for(int i=1; i<=6; ++i)
    43         Ans = (Ans+f[pos][i]) % Mod;
    44     res = ksm(4, n);
    45     Ans = Ans*res % Mod;
    46     cout << Ans;
    47     return 0;
    48 }
    方法一:DP+滚动数组 超时

    方法二是用矩阵快速幂来做,先挖个坑。。。

     

  • 相关阅读:
    SQLServer 知识点
    Entity转换为ViewModel时提供的一种转换方法
    Linq中IGrouping转换为IQueryable
    封装整形属性时对应到枚举
    新的转换列表方式
    工作态度
    EasyFrame
    NewCloud
    将博客搬至CSDN
    Html的语义化
  • 原文地址:https://www.cnblogs.com/Marginalin/p/12574116.html
Copyright © 2020-2023  润新知