• Stirling's Formula


    Keith Conrad. Stirling's Formula.

    Stirling's Formula

    [lim_{n ightarrow infty} frac{n!}{(n^n/e^n)sqrt{2pi n}} =1. ]

    Proof:

    [egin{array}{ll} n! &= int_{0}^infty x^n e^{-x} mathrm{d}x \ &= int_{-sqrt{n}}^infty (n+sqrt{n}t)^n e^{-(n+sqrt{n}t)} sqrt{n} mathrm{d}t \ &= frac{n^n sqrt{n}}{e^n} int_{-sqrt{n}}^{infty} (1+frac{t}{sqrt{n}})^n e^{-sqrt{n}t} mathrm{d}t. \ &= frac{n^n sqrt{n}}{e^n} int_{-infty}^{infty} f_n(t) mathrm{d}t, end{array} ]

    其中

    [f_{n}(t) = left { egin{array}{ll} 0 & t< sqrt{n} \ (1+frac{t}{sqrt{n}})^n e^{-sqrt{n}t} & tge sqrt{n} end{array} ight. ]

    接下来证明(f_n(t))趋于(e^{-frac{t^2}{2}}),

    [ln f_n(t) = n ln (1+ frac{t}{sqrt{n}}) - sqrt{n}t , t ge sqrt{n}, ]

    [ln (1+x) = 0 + x - frac{x^2}{2} + o(x^2), ]

    (n)足够大的时候

    [ln f_n(t) = sqrt{n}t -t^2/2+sqrt{n}t+o(t^2/n)=-frac{t^2}{2}+o(t^2/n), ]

    (f_n(t) ightarrow e^{-t^2/2}).
    观察((t ge -sqrt{n}))

    [egin{array}{ll} frac{mathrm{d}}{mathrm{d}t}(ln f_{n+1}(t) - ln f_n(t) ) &= frac{sqrt{n}t}{sqrt{n}+t} - frac{sqrt{n+1}t}{sqrt{n+1}+t} \ &= frac{(sqrt{n}-sqrt{n+1})t^2}{(sqrt{n}+t)(sqrt{n+1}+t)} le 0, end{array} ]

    (f_n(0)=0), 故

    [f_{n+1} /f_n ge 1, quad t in [sqrt{n},0), ]

    [f_{n+1} /f_n le 1, quad t in [0, +infty). ]

    (f_n(t))非负, 故根据单调收敛定理和优解控制定理可知

    [lim_{n ightarrow infty} int_{-infty}^{+infty} f_n(t) mathrm{d}t = int_{-infty}^{+infty} lim_{n ightarrow infty} f_n(t) mathrm{d}t = int_{-infty}^{+infty}e^{-frac{t^2}{2}}mathrm{d} t=sqrt{2 pi}. ]

    证毕.

  • 相关阅读:
    鸡哥的限币令(有上下限的网络流/费用流问题)
    AtCoder Regular Contest 128 部分题题解
    一道题
    2021CCPC河南省赛
    10.26训练赛
    博弈论和SG函数
    10.24训练赛
    10.22训练赛
    CF #749
    atcoder ABC233
  • 原文地址:https://www.cnblogs.com/MTandHJ/p/13819811.html
Copyright © 2020-2023  润新知